Funct. Mater. 2020; 27 (1): 224-229.

doi:https://doi.org/10.15407/fm27.01.224

Advanced detonation gun application for aluminum oxide coating

K.V.Korytchenko1, O.Y.Hichlo1, I.O.Belousov1, A.V.Mats2, O.A.Repikhov2, C.Senderowski3, D.P.Dubinin4, A.V.Tytarenko4

1National Technical University "Kharkiv Polytechnic of Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine
2National Science Center "Kharkiv Institute of Physics and Technology", 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine
3University of Warmia and Mazury in Olsztyn, 2 M.Oczapowskiego Str., Olsztyn, Warmia and Mazury, Poland
4National University of Civil Defence of Ukraine, 94 Chernyshevska Str., 61023 Kharkiv, Ukraine

Abstract: 

The results of an investigation of the thermal spraying of aluminum oxide coating using an advanced detonation gun are presented. The improvement of the gun consists in the pulse compression of a detonating gas charge in the tube before a start of detonation initiation. It allows feeding the gun by a mixture of propane with air, as a detonating gas, instead of a mixture of propane with oxygen. A stainless steel substrate was coated by Al2O3 using the developed pulse compression detonation gun. The adhesion and roughness of the coating are shown as a function of thickness. The results of electron microscopic investigation and microhardness measurements are presented.

Keywords: 
detonation gun, compressed mixture, thermal coating, aluminum oxide.
References: 
1. A.J.Panas, C.Senderowski, B.Fikus, Thermochim Acta, 676 (2019). https://doi.org/10.1016/j.tca.2019.04.009
https://doi.org/10.1016/j.tca.2019.04.009
 
2. B.Fikus, C.Senderowski, A.J.Panas, J. Thermal Spray Technology, 28, 3 (2019). https://doi.org/10.1007/s11666-019-00836-6
https://doi.org/10.1007/s11666-019-00836-6
 
3. M.Kutz, Handbook of Environmental Degradation of Materials, A.William (2018). https://doi.org/10.1016/C2016-0-02081-8
https://doi.org/10.1016/C2016-0-02081-8
 
4. G.Sundararajan, D.Srinivasa Rao, G.Sivakumar et al., Detonation Spray Coatings, Springer, MA (2013). https://doi.org/10.1007/978-0-387-92897-5_704
https://doi.org/10.1007/978-0-387-92897-5_704
 
5. K.N.Balan, B.R.Ramesh Bapu, Procedia Engineer, 38 (2012). https://doi.org/10.1016/ j.proeng.2012.06.078
 
6. WO Patent 2019045669 (2019).
 
7. L.Singh, V.Chawla, J.S.Grewal1, J. Minerals .Mater. Charact. .Engin., 11, (2012). doi:10.4236/ jmmce.2012.113019
 
8. W.Breitung, C.Chan, S.Dorofeev et al., Flame Acceleration and Deflagration-to-detonation Transition in Nuclear Safety, OECD Nuclear Energy Agency (2000).
 
9. M.A.Nettleton, Gaseous Detonations: their Nature, Effects and Control, Chapman and Hall (1987). https://doi.org/10.1002/ep.670060311.
https://doi.org/10.1002/ep.670060311
 
10. R.Driscoll, Master of Science in the School of Aerospace Systems of the College of Engineering and Applied Sciences (2013).
 
11. B.A.Rankin, S.W.Theuerkauf, F.R.Schauer, Performance, Application, and Analysis of Rotating Detonation Engine Technologies, Preprint (2015).
 
12. B Zhang, H.Dick Ng, R.Mevelet et al., Intern. J. Hydrogen Energy, 36, (2012). https://doi.org/10.1016/j.ijhydene. 2011.01.175.
 
13. D.Dubinin, K.Korytchenko, A.Lisnyak et al., Eastern-European J.Enterprise Technol., 2, 10 (2018). https://doi.org/ 10.15587/1729-4061.2018.127865
https://doi.org/10.15587/1729-4061.2018.125988
 
14. K.Korytchenko, Yu.Kysternyy, O.Sakun, in: 26th ICDERS Conf., Boston, MA, USA (2017), p.127.
 
15. A.Vinogradov, Degree Programme in Mechanical Engineering and Production Technology (2015).

Current number: