Funct. Mater. 2020; 27 (1): 54-66.

doi:https://doi.org/10.15407/fm27.01.54

Comparative analysis of thermal conductivity of polymer composites with random and segregated distribution of single and hybrid nanocarbon filler

Yu.Perets1, L.Vovchenko1, O.Turkov1, L.Matzui1, Ye.Mamunya2, O.Maruzhenko2

1Department of Physics, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska Str., 01601 Kyiv, Ukraine
2Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Chaussee, 02160 Kyiv, Ukraine

Abstract: 

The article is devoted to the study of concentration and temperature dependences of heat conductivity for composites with random distribution of mono or hybrid fillers in low viscosity resin Larit285 and segregated structures on the basis of ultra-high molecular weight polyethylene. A mono filler is graphite nanoplatelets or carbon nanotubes, a hybrid filler is a combination of graphite nanoplates and carbon nanotubes in different ratios (1:1, 3:1, and 0.2:x, vol.%). Concentration dependences of thermal conductivity have shown that graphite nanoplates are a more effective filler for increasing thermal conductivity. In segregated systems with carbon nanotubes, the thermal conductivity even decreases in comparison with the polymer matrix due to contact and interphase thermal resistance. Carbon nanotubes have a large specific surface, which contributes to the formation of a large number of interphase boundaries. For hybrid composites with a content of a hybrid filler more than 3-5 vol.%, a synergistic effect is observed, and the maximum increase in thermal conductivity is 465% for the xCNT-xGNP/L285 composite. The type of the temperature dependences of thermal conductivity, both for mono and for hybrid composites, is mainly due to the competition of two processes: an increase in the number of phonons when heated and growth of phonon scattering.

Keywords: 
nanocarbon filler, hybrid composite, segregated structure, thermal conductivity, graphite nanoplatelets, multi-wall carbon. nanotube.
References: 

1. O.Yakovenko, L.Matzui, G.Danylova et al., Nanoscale Res. Lett., 12, 471 (2017).
https://doi.org/10.1186/s11671-017-2244-0
 
2. Y.Perets, L.Vovchenko, L.Matzui et al., Materwiss. Werksttech., 47, 278 (2016).
https://doi.org/10.1002/mawe.201600493
 
3. A.Yu, P.Ramesh, X.Sun et al., Adv. Mater., 20, 4740 (2008).
https://doi.org/10.1002/adma.200800401
 
4. E.H.Weber, M.L.Clingerman, J.A. King, J. Appl. Polym. Sci., 88, 112 (2003).
https://doi.org/10.1002/app.11571
 
5. T.-L.Li, S.L.-C.Hsu, J. Phys. Chem. B, 114, 6825 (2010).
https://doi.org/10.1021/jp101857w
 
6. S.Y.Yang, W.N.Lin, Y.L.Huang et al., Carbon, 49, 793 (2011).
https://doi.org/10.1016/j.carbon.2010.10.014
 
7. K.T.S.Kong, M.Mariatti, A.A.Rashid et al., Compos. Part B, 58, 457 (2014).
https://doi.org/10.1016/j.compositesb.2013.10.039
 
8. F.Zhang, Q.Li, Y.Liu et al., J. Therm. Anal. Calorim., 1 (2015).
 
9. M.Shtein, R.Nadiv, M.Buzaglo et al., ACS Appl. Mater. Interfaces, 7, 23725 (2015).
https://doi.org/10.1021/acsami.5b07866
 
10. K.M.F.Shahil, A.A.Balandin, Nano. Lett., 12, 861 (2012).
https://doi.org/10.1021/nl203906r
 
11. Y.Perets, L.Aleksandrovych, M.Melnychenko et al., Nanoscale Res. Lett., 12, 406 (2017).
https://doi.org/10.1186/s11671-017-2168-8
 
12. O.Lazarenko, L.Vovchenko, L.Matzui et al., Mol. Cryst. Liq. Cryst., 536, 72/[304] (2011).
https://doi.org/10.1080/15421406.2011.538346
 
13. O.Yakovenko, L.Matzui, Yu.Perets et al., Nanophysics, Nanophotonics, Surface Studies, and Applications, 183, 477 (2016).
https://doi.org/10.1007/978-3-319-30737-4_39
 
14. Yu.Perets, L.Matzui, L.Vovchenko et al., Nanoscale Res. Lett., 11, 370 (2016).
https://doi.org/10.1186/s11671-016-1577-4
 
15. Y.Mamunya, InTech, Croatia, Chapter 9, 173 (2011).
https://doi.org/10.1007/978-94-6091-478-2_49
 
16. Yu.Perets, L.Matzui, L.Vovchenko et al., Mol. Cryst. Liq. Cryst., 589, 195 (2014).
https://doi.org/10.1080/15421406.2013.872825
 
17. Y.Perets, L.Matzui, L.Vovchenko, J. Mater. Sci., 49, 2098 (2014).
https://doi.org/10.1007/s10853-013-7901-9
 
18. O.Maruzhenko, Ye.Mamunya, S.Pruvost et al., Polymer Journal, 41, 41 (2019).
https://doi.org/10.15407/polymerj.41.01.041
 
19. E.Weber, M.Clingerman, J.King, J. Appl. Polym. Sci., 88, 123 (2003).
https://doi.org/10.1002/app.11572
 
20. D.Bigg, Polym. Compos., 7, 125 (1986).
https://doi.org/10.1002/pc.750070302
 
21. K.Raza, M.Usama Siddiqui, A.Fazal et al., Polym. Composites, 40, 1419 (2018).
https://doi.org/10.1002/pc.24879
 
22. M.Cao, C.Du, H.Guo et al., Composites: Part A, 115, 331 (2018).
https://doi.org/10.1016/j.compositesa.2018.09.024
 
23. H.Pang, Yu.Bao, S.-G.Yang et al., J. Appl. Polym. Sci., 131, 39789 (2013).
 
24. J.Grunlan, Y.Kim, S.Ziaee et al., Macromol. Mater. Eng., 291, 1035 (2006).
https://doi.org/10.1002/mame.200600191
 
25. C.Nan, G.Liu, Y.Lin et al., Appl. Phys. Lett., 85, 3549 (2004).
https://doi.org/10.1063/1.1808874
 
26. S.Huxtable, D.Cahill, S.Shenogin et al., Nat. Mater., 2, 731 (2003).
https://doi.org/10.1038/nmat996
 
27. Ye.Mamunya, A.Boudenne, N.Lebovka et al., Compos. Sci. Technol., 68, 1981 (2008).
https://doi.org/10.1016/j.compscitech.2007.11.014
 
28. L.Vovchenko, L.Matzui, V.Oliynyk et al., Mol. Cryst. Liq. Cryst., 672, 186 (2018).
https://doi.org/10.1080/15421406.2018.1555349
 
29. A.Lazarenko, L.Vovchenko, Y.Prylutskyy et al., Mat.-Wiss. U. Werkstofftech., 40, 268 (2009).
https://doi.org/10.1002/mawe.200900439
 
 

Current number: