Funct. Mater. 2020; 27 (2): 245-251.

doi:https://doi.org/10.15407/fm27.02.245

Influence of Bi doping and high-temperature annealing on optical and dielectric properties of CdWO4 crystals

O.M.Chugai1, I.A.Tupitsyna2, O.O.Voloshin1, S.V.Oliynick1, I.V.Luniov1

1National Aerospace University M.Zhukovsky "Kharkiv Aviation Institute", 17 Chkalov Str., 61070 Kharkiv, Ukraine
2Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The effect of Bi doping and annealing in hydrogen on the optical and dielectric properties of CWO crystals is investigated. It has been found that transmission of crystals decreases significantly in the region of 300-900 nm under the influence of the annealing and doping. In the temperature range of 80-290 K, a significant increase in the intensity of TSC and TSL of CWO crystals doped with Bi has been found. At the same time, there is no clear correlation between the maxima of the TSC and TSL curves, as well as there is the simultaneous emission of the red and blue luminescence bands at the maxima of the TSL curves. Under the influence of annealing and doping with Bi, a significant change in the complex dielectric constant of the CWO samples has been found in a wide frequency range.

Keywords: 
CdWO<sub>4</sub> crystal, crystal doped with Bi, annealing in hydrogen, complex dielectric constant.
References: 
1. L.Nagornaya, A.Apanasenko, S.Burachas et al., IEEE Trans. Nucl. Sci., 49, 297 (2002).
https://doi.org/10.1109/TNS.2002.998657
 
2. L.Nagornaya, G.Onyshchenko, E.Pirogov et al., Nucl. Instr. Meth. Phys. Res., A 537, 163 (2005).
https://doi.org/10.1016/j.nima.2004.07.258
 
3. L.Nagornaya, I.Tupitsyna, A.Apanasenko et al., in: Proc. of the Fifth Intern. Conf. (SCINT''99), Moscow, Russia (1999), p.653.
 
4. O.N.Chugai, V.K.Komar, V.M.Puzikov et al., Fiz. Tverd. Tela, 52, 2307 (2010).
https://doi.org/10.1134/S1063783410120048
 
5. O.N.Chugai, V.K.Komar, S.V.Sulima et al., Pisma Zh. Tekh. Fiz., 37, 1 (2011).
 
6. O.N.Chugai, A.S.Gerasimenko, V.K.Komar et al., Fiz. Tverd. Tela, 55, 50 (2013).
https://doi.org/10.1134/S1063783413010113
 
7. I.A.Tupitsyna, B.V.Grinyov, K.A.Katrunov et al., IEEE Trans. Nucl. Sci., 56, 2983 (2009).
https://doi.org/10.1109/TNS.2009.2027600
 
8. M.V.Pashkovskiy, A.E.Ovechkin, L.L.Nagornaya et al., Fiz. Electron., 32, 18 (1986).
 
9. V.N.Shevchuk, I.V.Kayun, Functional Materials, 13, 584 (2006).
 
10. A.R.Jonscer, Sci. Paper. Inst. Electr. Engen. Fund. Ser. Wspolpr., 16, 1 (1977).
 
11. N.Mott, E.Devis, Electronnye Processy v Nekrestallicheskich Veschestvach, Mir, Moskow (1982), [in Russian].
 
12. I.V.Klyatskina, I.S.Shlimak, Fiz. i Tehn. Polupr., 12, 134 (1978).
https://doi.org/10.1007/BF03300908

Current number: