Funct. Mater. 2020; 27 (2): 252-257.

doi:https://doi.org/10.15407/fm27.02.252

Photopolarization of undoped and gallium doped crystals of silicosillenites

T.V.Panchenko1, L.M.Karpova2

1O. Honchar Dnipro National University, 72 Gagarin Ave., 49010 Dnipro, Ukraine
2Ukrainian State University of Chemical Technology, 8 Gagarin Ave., 49005 Dnipro, Ukraine

Abstract: 

The effect of visible light on polarization processes in undoped and gallium doped crystals of silicosillenites (Bi12SiO20 and Bi12SiO20:Ga) was studied using thermoactivation, photo- and dielectric spectroscopy in the temperature range of 300 to 800 K. The temperature dependences of the current of thermally stimulated depolarization and dielectric permitivity, polarization charge, and dielectric hysteresis loops under different polarization conditions are obtained, and the mechanisms of space-charge and quasi-dipole polarization are identified.

Keywords: 
photopolarization, thermally stimulated depolarization, dielectric permitivity, undoped and gallium doped crystals of silicosillenites.
References: 

1. P.Gunter, J.Huignard, Photorefractive Materials and Their Applications, Part 1. Springer Science+Business Media, New York (2006).
https://doi.org/10.1007/b106782
 
2. P.Gunter, J.Huignard, Photorefractive Materials and Their Applications, Part 2 and 3, Springer Science+Business Media, New York (2007).
https://doi.org/10.1007/978-0-387-34728-8
 
3. V.T.Potapov, T.V.Potapov, A.V.Kuchtaetal, Photon-express, 6, 166 (2005).
 
4. T.V.Panchenko, N.A.Truseyeva, Ferroelectrics, 115, 73 (1991).
https://doi.org/10.1080/00150199108014480
 
5. I.Foldvard, I.E.Haliburrton., G.I.Edwards, Solid State Comm., 77, 181 (1991).
https://doi.org/10.1016/0038-1098(91)90329-T
 
6. T.V.Panchenko, Z.Z.Yanchuk, Phys. Solid State, 38, 1598 (1996).
 
7. V.V.Shepelevich, A.V.Makarevich, S.M.Shandarov, Probl. Phys., Mat. Techn., 3, 42 (2014).
 
8. A.A.Izvanov, A.E.Mandel, N.D.Chatkov et al., Avtometriya, 2, 79 (1986).
 
9. D.A.Fish, A.R.Powel, T.J.Hall et al., Opt. Comm., 98, 349 (1993).
https://doi.org/10.1016/0030-4018(93)90206-K
 
10. V.V.Shepelevich, Journ. Techn. Phys., 56, 618 (1986).
 
11. S.M.Shandarov, S.S.Chmakov, P.V.Zuevetal, J. Opt. Technol., 80, 409 (2013).
https://doi.org/10.1364/JOT.80.000409
 
12. A.M.Plesovskikh, S.M.Shandarov, E.Yu.Ageev, Phys. Solid State, 43, 251 (2001).
https://doi.org/10.1134/1.1349469
 
13. T.V.Panchenko, G.V.Snezhnoy, Phys. Solid State, 35, 1598 (1993).
 
14. T.V.Panchenko, Yu.N.Potapovith., L.M.Karpova, Ferroelectrics, 122, 1 (1998).
 
15. M.A.Bryushinin, Techn. Phys., 49, 1016 (2004).
https://doi.org/10.1134/1.1787661
 
16. Yu.Gorokhovatsky, H.Bordovsky, Termally Activational Current Spectroscopy of High-resistance Semiconductors and Dielectrics, Nauka, Moscow (1991) [in Russian].
 
17. C.Filipic, A.Klos, M.Gajc et al., J. Adv. Dielectr. 5, 1550023 (2015).
https://doi.org/10.1142/S2010135X1550023X
 
18. V.K.Malinovskiy, O.A.Gudaev, V.A.Gusev et al., Photoinduzirovanie Yavleniya v Sillenitakh, Nauka, Novosibirsk (1990) [in Russian].
 
19. Sh.Lardhi, D.Nourekine, M.Harb et al., J.. Chem. Phys., 144, 134702-1 (2016).
https://doi.org/10.1063/1.4945344
 
20. A.F.Lima, S.A.Farias, M.V.Lalic, J. Appl. Phys., 110, 083705 (2011).
https://doi.org/10.1063/1.3652751
 
21. O.G.Vendik, A.I.Deduk, R.V.Dmitryev et al., Fiz. Tverdogo Tela, 26, 684 (1984).
 
22. A.T.Shuvaev, V.G.Vlasenko, D.S.Drannikov et al., Inorg.Mater., 41, 1085 (2005).
https://doi.org/10.1007/s10789-005-0265-z
 

Current number: