Funct. Mater. 2020; 27 (2): 258-263.

doi:https://doi.org/10.15407/fm27.02.258

Radiation stability of co-doped NaI:Tl scintillators

N.Shiran, A.Gektin, E.Galenin, S.Vasyukov, V.Nesterkina

Institute for Scintillation Materials, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

It is shown that there are potential hidden mechanisms that can deteriorate the radiation stability of NaI(Tl) scintillators. It turned out that the formation of intrinsic hole centers upon irradiation is not the main reason for the decrease in scintillation yield, but their role increases in case of codoping. The determining process is the capture of carriers directly by thallium ions with the conversion of Tl+ to Tl2+. As a result, a positive effect of codoping can be achieved only with a strictly specified balance between these mechanisms.

Keywords: 
radiation stability scintillators, hole centers, codoping crystals
References: 

1. K.Yang, P.R.Menge, J. Appl. Phys., 118, 213106 (2015).
https://doi.org/10.1063/1.4937126
 
2. I.V.Khodyuk, S.A.Messina, T.J.Hayden et al., J. Appl. Phys., 118, 084901 (2015),
https://doi.org/10.1063/1.4928771
 
3. Inorganic Scintillators for Detector Systems, Physical Principles and Crystal Engineering, ed. by P.Lecoq, A.Gektin, M.Korzhik, Handbook, 2nd Edition, Springer (2017).
 
4. N.Shiran, I.Boiaryntseva, A.Gektin et al., Mater. Res. Bulletin, 59, 13 (2014).
https://doi.org/10.1016/j.materresbull.2014.06.019
 
5. N.V.Shiran, A.V.Gektin, Ya.Boyarintseva et al., IEEE Trans. Nucl. Scie., 57, 1233 (2010).
https://doi.org/10.1109/TNS.2010.2048578
 
6. R.Adhikari, Qi Li, R.T.Williams et al., J. Appl. Phys., 116, 223703 (2014).
https://doi.org/10.1063/1.4903766
 
7. Y.Uchida, Y.Nakai, J. Phys. Soc. Jpn., 9, 928 (1954).
https://doi.org/10.1143/JPSJ.9.928
 
8. R.I.Didyk, M.V.Pashkovski, N.A.Tsal', Opt. and Spectr., 20, 832 (1966).
 
9. E.Rzepka, S.Lefrant, L.Taurel, Rad. Eff. Def. Solids, 98, 301 (1986).
https://doi.org/10.1080/00337578608206120
 
10. E.Rzepka, M.Bernard, S.Lefrant, Nucl. Instrum, Meth. Phys. Res. B, 32, 235 (1988).
https://doi.org/10.1016/0168-583X(88)90216-9
 
11. W.J.van Sciver, Phys. Rev., 120, 1193 (1960).
https://doi.org/10.1103/PhysRev.120.1193
 
12. M.P.Fontana, W.J.van Sciver, Phys. Stat. Sol., 37, 375 (1970).
https://doi.org/10.1002/pssb.19700370142
 
13. M.Moszynski, W.Czarnacki, A.Syntfeld-Kazuch et al., IEEE Trans. Nucl. Scie., 56, 1655 (2009).
https://doi.org/10.1109/TNS.2009.2020167
 
14. A.V.Andryuschenko, S.Budakovskiy, Yu.Vostrezov et al., Ukr. Phys. Journ., 22, 1009 (1977).
 
15. A.Gektin, N.Shiran, S.Vasyukov et.al. Opt. Mater., 35, 2613 (2013).
https://doi.org/10.1016/j.optmat.2013.07.029
 
16. H.Vrielink, D.G. Zverev, P.Leblans et.al. Phys. Rev. B85, 144119, (2012).
https://doi.org/10.1103/PhysRevB.85.144119
 
17. R.G.Kaufman, W.B.Hadley, H.N.Hersh, IEEE TNS, 17, 82 (1970).
https://doi.org/10.1109/TNS.1970.4325679
 
18. Qiang Sun, Jinsheng Shi, J. Lumin., 131, 984 (2011).
https://doi.org/10.1016/j.jlumin.2011.01.007
 
19. T.P.Rebrova, V.L.Cherginets, Yu.N.Datsko et al., Russ. J. Inorg. Chem., 57, 427 (2012).
https://doi.org/10.1134/S0036023612030242
 
20. V.L.Cherginets, T.P.Rebrova, Yu.N.Datsko et al., J. Cryst. Growth, 380, 143 (2013).
https://doi.org/10.1016/j.jcrysgro.2013.06.013

Current number: