Funct. Mater. 2020; 27 (2): 264-269.

doi:https://doi.org/10.15407/fm27.02.264

Improvement of strength characteristics of quartz ceramics

E.S.Khomenko1, A.V.Zaichuk1, E.V.Karasik1, V.D.Ivchenko2, N.M.Sribniak2, B.M.Datsenko3

1State Higher Educational Institution "Ukrainian State University of Chemical Technology", 8 Haharina Ave., 49005 Dnipro, Ukraine
2Sumy National Agrarian University, 160 Kirova Str., 40021 Sumy, Ukraine
3Kyiv National University of Civil Engineering and Architecture, 31 Povitroflotskyi Ave., 03037 Kyiv, Ukraine

Abstract: 

The paper deals with one of the methods of increasing the strength of quartz ceramics, i.e. introduction of a finely dispersed fibrous aluminosilicate additive into the material. The additive is introduced into the slip of finely ground quartz glass cullet in the amount of 1-3 weight % and promotes improvement of the uniformity of the slip suspension, which reduces its tendency to subsidence. Introduction of the above additive also allows increasing the bending strength of the semi-finished product and sintered material 1.8-2.1 times. Furthermore, the introduction of fibers into quartz ceramics leads to increase in the particles' packing density during formation of the ceramic body structure, which is manifested in the reduction of water absorption indices by an average of 10 %.

Keywords: 
quartz ceramics, quartz glass cullet, aluminosilicate fibers, slip, glass phase, cristobalite, firing, water absorption, mechanical strength.
References: 

1. Ye.I.Suzdaltsev, J. Refract.Techn. Ceram, 7-8, 21 (2009).
 
2. E.S.Khomenko, E.V.Karasik, V.I.Goleus, Functional Materials, 4, 593 (2017).
https://doi.org/10.15407/fm24.04.593
 
3. A.V.Zaichuk, A.A.Amelina, J. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 63 (2017).
 
4. N.S.Savchenko, O.I.Podkopaev, M.N.Vasil'eva, A.F.Shimanskij, J. Refract. Techn. Ceram, 1, 30 (2007).
 
5. E.S.Khomenko, A.V.Zaichuk, E.V.Karasik, A.A.Kunitsa, Functional Materials, 3, 613 (2018).
https://doi.org/10.15407/fm25.03.613
 
6. Yu.E.Pivinskij, P.V.Dyakin, J. New Refractories, 7, 33 (2014).
 
7. L.Xiangming, Y.Guojian, Zh.Mengyao et al., J. Ceram. Intern., 45, 5965 (2019).
https://doi.org/10.1016/j.ceramint.2018.12.066
 
8. RU Patent 2,515,737 (2014).
https://doi.org/10.4155/ppa.13.57
 
9. RU Patent 2,263,090 (2005).
https://doi.org/10.1088/1126-6708/2005/08/090
 
10. RU Patent 2436206 (2011).
 
11. Ya.I.Guzman, Workshop on Ceramics Technologists, Strojmaterialy, Moscow (2005) [in Russian].
 
12. L.S.Zevin, G.Kimmel, Quantitative X-Ray Diffractometry, Springer-Verlag NewYork, Inc, New-York (1995).
https://doi.org/10.1007/978-1-4613-9535-5
 
13. A.J.Headley, M.B.Hileman, A.S.Robbins et al., J. Intern. J. Heat Mass Transf., 129, 1287 (2019).
https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.060
 
14. B.Claus, D.Schwaller, J. Adv. Sci. Tech., 50, 1 (2006).
https://doi.org/10.4028/www.scientific.net/AST.50.1
 
15. A.R.Bunsell, M.H.Berger, Fine Ceramic Fibers, NY, Marcel Dekker (1999).
 
16. I.M.Afanasov, B.I.Lazoryak, High Temperature Ceramic Fibers, MGU, Moscow (2010) [in Russian].
 
17. Yu.A.Ivakhnenko, N.M.Varrik, V.G.Maksimov, J. "Proceedings VIAM", 5 (2016).
 
18. I.S.Rez, Yu.M.Poplavko, Dielectrics. Basic Properties and Applications in Electronics, Radio i Svyaz', Moscow (1989) [in Russian].
 

 

Current number: