Funct. Mater. 2020; 27 (2): 270-276.

doi:https://doi.org/10.15407/fm27.02.270

Effect of Nd3+ ions on porosity of SiO2-doped 0-4 at% Nd3+:Y3Al5O12 laser ceramics on different stages of reactive sintering

D.Yu.Kosyanov1, A.A.Vornovskikh1, A.M.Zakharenko1, A.D.Timoshenko2, I.O.Vorona2, A.G.Doroshenko2, S.V.Parkhomenko2, A.V.Tolmachev2, V.Yu.Mayorov3, V.G.Kuryavyi3

1Far Eastern Federal University, 8 Sukhanova Str., 690950 Vladivostok, Russian Federation
2Institute for Single Crystals, STC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3Institute of Chemistry, Far-Eastern Branch, Russian Academy of Sciences, 159 100-let Vladivostoku Ave., 690022 Vladivostok, Russian Federation

Abstract: 

The evolution of the pore structure of ceramics 0-4 at% Nd3+:Y3Al5O12 at the initial and intermediate stages of sintering was studied by the nitrogen physical adsorption. It was shown that the maximum decrease in the specific surface area (by 70-83 %) and the total volume of nanopores (by 84-92 %) at the sintering temperature range of 1100-1500°C is observed for systems with (Nd3+) = 1-2 at%. The nonlinear nature of the effect of neodymium on the formation of the Nd3+:Y3Al5O12 microstructure is established, which is explained by the presence of several competing mechanisms, the magnitude of which varies differently with the activator concentration. Differences in the pore structure and transparency of ceramics 1-4 at% Nd3+:Y3Al5O12 at the final sintering stage are shown. A possible reason for the slowdown in densification of samples with (Nd3+) →3 at% is a decrease in diffusion mobility in the cationic sublattice of garnet. 1.2 at% Nd3+:Y3Al5O12 laser ceramics obtained by reactive sintering at 1750°C for 10 h are characterized by a residual porosity of 0.0009 and 0.0026 vol% with an average pore size of 182 and 161 nm, respectively.

Keywords: 
pore evolution, reactive sintering, residual porosity, laser ceramics.
References: 

1. W.Rice, Key Eng. Mater., 115, 1 (1996).
https://doi.org/10.4028/www.scientific.net/KEM.115.1
 
2. G.L.Messing, A.J.Stevenson, Science, 322, 383 (2008).
https://doi.org/10.1126/science.1160903
 
3. A.Ikesue, Y.L.Aung, Nat. Photonics, 2, 721 (2008).
https://doi.org/10.1038/nphoton.2008.243
 
4. S.-J.L.Kang, Sintering: Grain Growth and Microstructure, Elsevier Butterworth-Heinemann Linacre House, Oxford (2005).
 
5. D.Yu.Kosyanov, R.P.Yavetskiy, V.N.Baumer et al., J. Alloys Compd., 686, 526 (2016).
https://doi.org/10.1016/j.jallcom.2016.06.046
 
6. I.O.Vorona, R.P.Yavetskiy, A.G.Doroshenko et al., Process. Appl. Ceram., 11, 290 (2017).
https://doi.org/10.2298/PAC1704290V
 
7. J.E.Saal, D.Shin, A.J.Stevenson et al., J. Am. Ceram. Soc., 93, 4158 (2010).
https://doi.org/10.1111/j.1551-2916.2010.03993.x
 
8. D.Yu.Kosyanov, R.P.Yavetskiy, S.V.Parkhomenko et al., J.Alloys Compd., 781, 892 (2019).
https://doi.org/10.1016/j.jallcom.2018.12.130
 
9. R.P.Yavetskiy, V.N.Baumer, A.G.Doroshenko et al., J. Cryst. Growth, 401, 839 (2014).
https://doi.org/10.1016/j.jcrysgro.2014.01.034
 
10. D.Yu.Kosyanov, V.N.Baumer, R.P.Yavetskiy et al., Crystallogr. Rep., 60, 299 (2015).
https://doi.org/10.1134/S1063774515020121
 
11. D.Dollimore, G.R.Heal, J. Appl. Chem., 14, 109 (1964).
https://doi.org/10.1002/jctb.5010140302
 
12. S.J.Gregg, K.S.W.Sing, Absorption, Surface Area and Porosity, Academic Press, New York (1982).
 
13. B.C.Lippens, J.H.de Boer, J. Catal., 4, 319 (1965).
https://doi.org/10.1016/0021-9517(65)90307-6
 
14. E.P.Barrett, L.G.Joyner, P.P.Halenda, J. Am. Chem. Soc., 73, 373 (1951).
https://doi.org/10.1021/ja01145a126
 
15. W.B.Liu, J.Li, B.X.Jiang et al., J. Alloys Compd., 512, 1 (2012).
https://doi.org/10.1016/j.jallcom.2011.09.038
 
16. A.J.Stevenson, E.R.Kupp, G.L.Messing, J. Mater. Res., 26, 1151 (2011).
https://doi.org/10.1557/jmr.2011.45
 
17. H.Yang, X.Qin, J.Zhang et al., Opt. Mater., 34, 940 (2012).
https://doi.org/10.1016/j.optmat.2011.05.029
 
18. S.Kochawattana, A.Stevenson, S.-H.Lee et al., J. Eur. Ceram. Soc., 28, 1527 (2008).
https://doi.org/10.1016/j.jeurceramsoc.2007.12.006
 
19. K.Ueda, J.Lu, K.Takaichi et al., Rev. Laser. Eng., 31, 465 (2003).
https://doi.org/10.2184/lsj.31.465
 
20. A.Szysiak, D.Klimm, S.Ganschow et al., J. Alloys Compd., 509, 8615 (2011).
https://doi.org/10.1016/j.jallcom.2011.06.049
 
21. X.Xiang, L.Qiao, H.Y.Xiao et al., Sci. Rep., 4, 5477 (2014).
https://doi.org/10.1038/srep05477
 
22. A.Ikesue, Y.L.Aung, V.Lupei, Ceramic Lasers, Cambridge University Press, Cambridge (2013).
https://doi.org/10.1017/CBO9780511978043

Current number: