Funct. Mater. 2020; 27 (2): 283-295.

doi:https://doi.org/10.15407/fm27.02.283

Synthesis and properties of magnetosensitive nanocomposites and ferrofluids based on magnetite, gemcitabine and HER2 antibody

M.V.Abramov1, A.L.Petranovska1, N.V.Kusyak2, A.P.Kusyak2, N.M.Korniichuk1, S.P.Turanska1, P.P.Gorbyk1, N.Yu.Luk'yanova3, V.F.Chekhun3

1O.Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
2I.Franko Zhytomyr State University, 40 V.Berdychevska Str., 10008 Zhytomyr, Ukraine
3R.Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, National Academy of Sciences of Ukraine, 45 Vasylkivska Str., 03022 Kyiv, Ukraine

Abstract: 

The processes of adsorption of gemcitabine (GEM) on a surface of nanosized single-domain magnetite (Fe3O4) and magnetic properties of Fe3O4@GEM nanocomposites (NC) have been investigated. Ferrofluids (FF) were synthesized based on magnetite and physiological solution (PS), stabilized with sodium oleate (Ol.Na) and polyethylene glycol (PEG), containing GEM (Fe3O4@GEM/Ol.Na/PEG+PS). The properties of FF were investigated, as well as cytotoxic/cytostatic activity with respect to HepG2 hepatocellular carcinoma (HCC) cells of human liver. It was revealed that the complex action of GEM and her2 antibody (AB) in composition of FF Fe3O4@GEM/Ol.Na/PEG+PS+HER2 onto HepG2 cells caused the synergistic effect and an increase in cytotoxic activity by ~ 18-20 %, compared to GEM in mono-use, with a considerable decrease in its concentration.

Keywords: 
adsorption, gemcitabine, nanosized single-domain magnetite, core-shell nanocomposites, ferrofluids, her2 antibody.
References: 

1. M.C Roco, R.S.Williams, P.Alivisatos, Vision for Nanotechnology R&D in the Next Decade, Kluwer Acad. Publ., Dordrecht (2002).
 
2. L.Levy, Y.Sahoo, B.J.Earl, Chem. Mater,, 14, 3715 (2002).
https://doi.org/10.1021/cm0203013
 
3. K.Lund, A.J.Manzo, N.Dabby et al., Nature, 465, 206 (2010).
https://doi.org/10.1038/nature09012
 
4. R.A.Muscat, J.Bath, A.J.Turberfield, Nanoletters, 3, 982 (2011).
https://doi.org/10.1021/nl1037165
 
5. Fiziko-khimiya Nanomaterialov i Supramolekuliarnykh Struktur, ed, by A.Shpak, P.Gorbyk, Naukova Dumka, Kyiv (2007)
 
6. Nanomaterials and Supramolecular Structures: Physics, Chemistry, and Applications, ed. by A.P.Shpak, P.P.Gorbyk, Springer, Dordrecht, Heidelberg, London, New York (2009).
 
7. P.P.Gorbyk, Nanosystemy, Nanomaterialy, Nanotekhnologiyi, 2, 323 (2013).
 
8. UA Patent 99211 (2012).
 
9. M.V.Abramov, A.P.Kusyak, O.M.Kaminskiy et al., Horiz in World Phys., 293, 1 (2017).
 
10. I.V.Pylypchuk, D.Kolodynska, P.P.Gorbyk, Separ. Sci. Technol,, 53, 1006 (2018).
https://doi.org/10.1080/01496395.2017.1330830
 
11. P.P.Gorbyk, L.B.Lerman, A.L.Petranovska, S.P.Turanska, Advan. Semicond. Res.: Phys. Nanosystems, Spintronics Technol. Appl., 161 (2014).
 
12. P.P.Gorbyk, L.B.Lerman, A.L.Petranovska, Appl. Nanobiomater., 289 (2016).
https://doi.org/10.1016/B978-0-323-41533-0.00010-6
 
13. A.L.Petranovska, N.V.Abramov, S.P.Turanska et al., J. Nanostr. Chem., 5, 275 (2015).
https://doi.org/10.1007/s40097-015-0159-9
 
14. N.V.Abramov, S.P.Turanska, A.P.Kusyak et al., J. Nanostr. Chem., 6, 223 (2016).
https://doi.org/10.1007/s40097-016-0196-z
 
15. P.P.Gorbyk, V.F.Chekhun, Aip. Conf. Proc.. 2, 145 (2012).
 
16. I.V.Pylypchuk, M.V.Abramov, A.L.Petranovska et al., Springer Proc. Phys., 214, 35 (2017).
https://doi.org/10.1007/978-3-319-92567-7_2
 
17. M.V.Abramov, S.P.Turanska, P.P.Gorbyk, Metallofiz. Nov. Tekh., 4, 423 (2018).
https://doi.org/10.15407/mfint.40.04.0423
 
18. M.V.Abramov, S.P.Turanska, P.P.Gorbyk, Metallofiz. Nov. Tekh., 10, 1283 (2018).
https://doi.org/10.15407/mfint.40.10.1283
 
19. I.V.Pylypchuk, D.Kolodynska, M. Koziol, P.P.Gorbyk, Nanoscale Res. Lett., 11, 168 (2016).
https://doi.org/10.1186/s11671-016-1363-3
 
20. UA Patent 112490 (2016).
 
21. P.P.Gorbyk, A.L.Petranovska, M.P.Turelyk et al., Fizyka ta Tekhnologiya Poverkhni, 3, 360 (2010).
 
22. P.P.Gorbyk, I.V.Dubrovin, A.L.Petranovska, M.P.Turelyk, Poverkhnost', 2, 287 (2010).
 
23. P.P.Gorbyk, A.L.Petranovska, M.P.Turelyk et al., Fizyka ta Tekhnologiya Poverkhni, 4, 433 (2011).
 
24. T.W.Kang, T.Yevsa, N.Woller et al., Nature, 479, 547 (2011).
https://doi.org/10.1038/nature10599
 
25. T.Yevsa, T.W.Kang, L.Zender, Oncoimmunology, 1, 398 (2012).
https://doi.org/10.4161/onci.19128
 
26. C.Schneider, A.Teufel, T.Yevsa et al., BMJ Gut, 61, 1733 (2012).
https://doi.org/10.1136/gutjnl-2011-301116
 
27. A.Reinhardt, T.Yevsa, T.Worbs et al., Arthritis Rheumatol, 68, 2476 (2016).
https://doi.org/10.1002/art.39732
 
28. B.Wolf, K.Krieg, C.Falk et al., Cancer Res., 76, 5550 (2016).
https://doi.org/10.1158/0008-5472.CAN-15-3453
 
29. S.V.Gorobets', O.Yu.Gorobets', P.P.Gorbyk, I.V.Uvarova, Funktsionalni Bio- ta Nanomaterialy Medychnogo Pryznachennia, Kondor, Kyiv, (2018).
 
30. I.V.Uvarova, P.P.Gorbyk, S.V.Gorobets' et al., Nanomaterialy Medychnogo Pryznachennia, ed. V.V.Skorokhod, Naukova Dumka, Kyiv (2014).
 
31. S.L.Gutorov, N.N.Semenova, Ye.I.Zagrekova, Russkiy Meditsinskiy Zh., 9, 1017 (2001).
 
32. R.R.Plentz, N.P.Malek, Visceral Medicine, 32, 427 (2016).
https://doi.org/10.1159/000453084
 
33. A.Jain, L.N.Kwong, M.Javle, Curr. Treat Option On, 17, 58 (2016).
https://doi.org/10.1007/s11864-016-0432-2
 
34. Online resource: Gemtsitabin. Nedavniye Etapy II i III Klinicheskikh Ispytanii v Metastaticheskom Rake Podzheludochnoi Zhelezy, per. angl. N.D.Firsov (2017). Access point:https://www.meir-health.ru/
 
35. J.L.Arias, L.H.Reddy, P.Couvreur, J. Mater. Chem,, 22, 7622 (2012).
https://doi.org/10.1039/c2jm15339d
 
36. R.C.Popescu, E.Andronescu, B.S.Vasile et al., Molecules, 22, 1080 (2017).
https://doi.org/10.3390/molecules22071080
 
37. G.R.Iglesias, F.Reyes-Ortega, B.L.Checa Fernandez, A.V.Delgado, Polymers-Basel, 10, 269 (2018).
https://doi.org/10.3390/polym10030269
 
38. UA Patent 118524 (2019).
 
39. V.M.Moiseenko, Prakticheskaya Onkologiya, 3, 253 (2002).
 
40. M.Tan, D.Yu, Adv. Exp. Med. Biol,, 608, 119 (2007).
https://doi.org/10.1007/978-0-387-74039-3_9
 
41. A.D.Santin, S.Bellone, J.J.Roman et al., Int. J. Gynecol Obstet,, 102, 128 (2008).
https://doi.org/10.1016/j.ijgo.2008.04.008
 
42. A.Gorodetskaya, Onkologiya, 13, 111 (2011).
 
43. N.V.Borisenko, V.M.Bogatyrev, I.V.Dubrovin et al., Fiziko-khimiya Nanomaterialov i Supramolekuliarnykh Struktur, Naukova Dumka, Kyiv (2007) [in Russian].
 
44. R.Ya.Freshni, Kultura Zhyvotnykh Kletok: Prakticheskoye Rukovodstvo, 5 edition, BINOM, Laboratoriya Znaniy, Moscow (2010).
 
45. V.A.J.Silva, P.L.Andrade, M.P.C.Silva et al., J. Magn. Magn. Mater., 343, 138 (2013).
https://doi.org/10.1016/j.jmmm.2013.04.062
 
46. S.Mornet, S.Vasseur, F.Grasset et al., Prog, Solid State Ch, 34, 237 (2006).
https://doi.org/10.1016/j.progsolidstchem.2005.11.010
 
47. D.-X.Chen, N.Sun, H.-C.Gu, J. Appl. Phys., 106, 63906 (2009).
https://doi.org/10.1063/1.3211307
 
48. N.Yu.Luk'yanova, autoref. dis. doct. biol. sciences, Kyiv (2015).

Current number: