Funct. Mater. 2020; 27 (2): 322-328.

doi:https://doi.org/10.15407/fm27.02.322

Effect of the type of reducing agents of copper ions in interpolyelectrolyte-metal complexes on the structure and properties of copper-containing nanocomposites

V.L.Demchenko, S.V.Riabov, V.I.Shtompel, S.M.Kobylinskyi, L.A.Goncharenko

Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske Chaussee, 02160 Kyiv, Ukraine

Abstract: 

The structural features, thermomechanical and electrical properties of copper-containing polymer nanocomposites formed by chemical reduction of copper ions in interpolyelectrolyte-metal complexes like pectin-Cu2+-polyethyleneimine with the use of various reducing agents (sodium borohydride, hydrazine, and ascorbic acid) are investigated. X-ray diffraction analysis reveals that the use of NaBH4 and C6H8O6 reducing agents results in formation of nanocomposites with Cu/Cu2O "core-shell" nanoparticles, while when using N2H4 as a reductant, nanocomposites with only metallic copper nanoparticles are formed. Thermo-mechanical analysis shows that the reduction process becomes more efficient with increasing in the molar ratio of (NaBH4 or C6H8O6):Cu2+ from 2 to 6, whereas, in the case of N2H4, complete reduction occurs already at a molar ratio of N2H4:Cu2+ = 2. Copper-containing nanocomposites formed by NaBH4 and N2H4 are established to exhibit semiconductor properties, whereas the initial interpolyelectrolyte complexes and nanocomposites prepared with C6H8O6 are typical dielectrics.

Keywords: 
interpolyelectrolyte complexes, interpolyelectrolyte-metal complexes, copper-containing nanocomposite, structure, properties.
References: 

1. V.Demchenko, S.Riabov, N.Rybalchenko et al., Eur. Polym. J., 96, 326 (2017).
https://doi.org/10.1016/j.eurpolymj.2017.08.057
 
2. A.D.Pomogailo, A.S.Rozenberg, I.E.Uflyand, Metal Nanoparticles in Polymers, Khimiya, Moscow (2000) [in Russian].
 
3. L.Nicolais, Metal Polymer Nanocomposites, Wiley, New York (2005).
https://doi.org/10.1002/0471695432
 
4. A.A.Zezin, Pol. Sci., C 58, 118 (2016).
https://doi.org/10.1134/S1811238216010136
 
5. R.Kaur, C.Giordano, M.Gradzielski et al., Chem. Asian J., 9, 189 (2014).
https://doi.org/10.1002/asia.201300809
 
6. R.Prucek, L.Kvitek, A.Panacek et al., J. Mater. Chem., 19, 8463 (2009).
https://doi.org/10.1039/b913561h
 
7. Y.Wang, T.Asefa, Langmuir, 26, 7469 (2010).
https://doi.org/10.1021/la904199f
 
8. A.Bakar, V.V.De, A.A.Zezin et al., Mendeleev Commun., 22, 211 (2012).
https://doi.org/10.1016/j.mencom.2012.06.014
 
9. P.Ruiz, J.Macanas, M.Munoz et al., Nanoscale Res. Lett., 6, 343 (2011).
https://doi.org/10.1186/1556-276X-6-343
 
10. V.Demchenko, V.Shtompel, S.Riabov, Eur. Polym. J., 75, 310 (2016).
https://doi.org/10.1016/j.eurpolymj.2016.01.004
 
11. D.V.Pergushov, A.A.Zezin, A.B.Zezin et al., Adv. Polym. Sci., 255, 173 (2014).
https://doi.org/10.1007/12_2012_182
 

Current number: