Funct. Mater. 2020; 27 (2): 337-341.

doi:https://doi.org/10.15407/fm27.02.337

Effect of annealing temperature on properties of P-N co-doped ZnO films

Yupeng Xie, Xinhai Li, XianDe Wang

College of Science, Jilin Institute of Chemical Technology, 132022 Jilin, P.R. China

Abstract: 

P-N co-doped ZnO films were grown on a quartz substrate by the radio-frequency magnetron sputtering technique using a mixture of N2 and Ar gases; then the films were annealed rapidly in air. Effect of annealing temperature on structural, electrical and optical properties of the P-N co-doped films was investigated. Results indicated that the electrical properties of the films were sensitive to the annealing temperature, and the conduction type could be changed from n-type to p-type with increasing the annealing temperature from 600°C to 800°C. The P-N co-doped p-type ZnO film had a resistivity of 32.43 Ω·cm, a hole concentration of 6.09·1017 cm-3 and a mobility of 0.78 cm2V-1s-1, respectively. The ZnO homojunction shows a rectifying characteristic.

Keywords: 
ZnO, phosphorus, nitrogen, codoping, annealing temperature.
References: 

1. T.Aoki, Y.Shimizu, A.Miyake et al., Phys. Stat. Solidi, 229, 911 (2002).
https://doi.org/10.1002/1521-3951(200201)229:2<911::AID-PSSB911>3.0.CO;2-R
 
2. W.-J.Lee, J.Kang, K.Chang, Phys. Rev. B, 73, 024117 (2006).  https//doi.org/10.1103/PhysRevB.73. 024117.
 
3. S.Yu, W.Zhang, L.Li et al., Appl. Surf. Sci., 298, 44 (2014). https//doi.org/10.1016/j.apsusc.2014. 01.037.
 
4. Y.Y.Kim, W.S.Han, H.K.Cho, Appl. Surf. Sci., 256, 4438 (2010). https//doi.org/10.1016/j.apsusc. 2010.01.035.
 
5. L.Duan, W.Zhang, X.Yu et al., Solid State Commun. 157, 45 (2013).
https://doi.org/10.1016/j.ssc.2012.12.029
 
6. Q.J.Feng, J.Wang, S.Liu et al., J. Phys. Chem. Solids, 74, 476 (2013).
https://doi.org/10.1016/j.jpcs.2012.11.013
 
7. H.F.Liu, S.J.Chua, J. Cryst. Growth, 324, 31 (2011).
https://doi.org/10.1016/j.jcrysgro.2011.03.045
 
8. D.Hwang, H.Kim, J.Lim et al., Appl. Phys. Lett., 86, 15917 (2005).https//: doi.org/10.1063/ 1.1895480.
 
9. D.C.Look, G.M.Renlund, R.H.Burgener, J.R.Sizelove, Appl. Phys. Lett., 85, 5269 (2004). 
https://doi.org/10.1063/1.1825615
 
10. W.M.Cho, Y.J.Lin, C.J.Liu et al., J. Luminescence, 145, 884 (2014).
https://doi.org/10.1016/j.jlumin.2013.09.029
 
11. Z.Yu, L.-C.Yin, Y.Xie et al., J. Colloid Interface Sci., 400, 18 (2013).
https://doi.org/10.1016/j.jcis.2013.02.046
 
12. M.Duta, S.Mihaiu, C.Munteanu et al., Appl. Surf. Sci., 344, 196 (2015). 
https://doi.org/10.1016/j.apsusc.2015.03.123
 
13. T.K.Pathak, V.Kumar, L.P.Purohit, Optik (Stuttg)., 127, 603 (2016). 
https://doi.org/10.1016/j.ijleo.2015.10.013
 
14. Y.R.Sui, B.Yao, L.Xiao et al., Thin Solid Films, 520, 5914 (2012). .
https://doi.org/10.1016/j.tsf.2012.04.076
 
15. N.Gopalakrishnan, B.C.Shin, H.S.Lim et al., J. Cryst. Growth, 294, 273 (2006). 
https://doi.org/10.1016/j.jcrysgro.2006.06.045
 
16. Y.R.Sui, B.Yao, L.Xiao et al., Appl. Surf. Sci., 287, 484 (2013).
https://doi.org/10.1016/j.apsusc.2013.10.010
 
17. R.Mannam, S.K.Eswaran, N.Dasgupta, M.S.R.Rao, Appl. Surf. Sci., 347, 96 (2015). 
https://doi.org/10.1016/j.apsusc.2015.04.057
 
18. Y.Sui, B.Yao, L.Xiao et al., J. Appl. Phys., 113 (2013).
https://doi.org/10.1063/1.4798605
 
19. R.Mannam, E.S.Kumar, N.DasGupta, M.S.Ramachandra Rao, Appl. Surf. Sci., 400, 312 (2017). 
https://doi.org/10.1016/j.apsusc.2016.12.146
 
20. Y.P.Xie, X.D.Wang, C.Lang, Surf. Eng., 31, 770 (2015). 
https://doi.org/10.1179/1743294415Y.0000000024

21. P.Zu, Z.K.Tang, G.K.L.Wong et al., Solid State Commun., 103, 459 (1997). 
https://doi.org/10.1016/S0038-1098(97)00216-0

Current number: