Funct. Mater. 2020; 27 (2): 342-347.

doi:https://doi.org/10.15407/fm27.02.342

Optical properties of CdTe thin films obtained by the method of high-frequency magnetron sputtering

R.Petrus, H.Ilchuk, A.Kashuba, I.Semkiv, E.Zmiiovska.

Lviv Polytechnic National University, 12 S.Bandera Str., 79013 Lviv, Ukraine

Abstract: 

The optical constants and thickness of CdTe thin films prepared by high-frequency magnetron sputtering method are determined. The synthesis procedure and the results of optical studies of CdTe thin films deposited on the surface of a glass/ITO substrate are given. The optical constants and the band gap of the films under study have een determined. Optical properties (refractive index n(λ), absorption coefficient α(λ), and extinction coefficient k(<&lambda>;)) of the thin films and thickness d can be determined from the transmission spectrum. The dispersion of the refractive index was explained using a single oscillator model. Single oscillator energy and dispersion energy are obtained from fitting. Optical parameters of the films were determined using the Cauchy, Sellmeier and Wemple models.

Keywords: 
thin films, absorption, dispersion, refractive index, transmission.
References: 

1. N.Romeo, A.Bosio, R.Tedeschi, V.Canevari, Mater. Chem. Phys., 66, 201 (2000).
https://doi.org/10.1016/S0254-0584(00)00316-3
 
2. H.A.Ilchuk, R.Y.Petrus, A.I.Kashuba et al., Nanosystemy, Nanomater. Nanotehnologii, 16, 519 (2018).
 
3. E.Camacho-Espinosa, A.Lopez-Sanchez, I.Rimmaudo et al., Solar Energy., 193, 31 (2019). 
https://doi.org/10.1016/j.solener.2019.09.023
 
4. M.F.Al-Kuhaili, M.B.Mekki, S.A.Abdalla, Thin Solid Films, 686, 137412 (2019). 
https://doi.org/10.12693/APhysPolA.128.B-219
 
5. E.Hasani, M.Kamalian, M.Gholizadeh Arashti, L.Babazadeh Habashi, J.Electron.Mater. 48, 4283 (2019). 
https://doi.org/10.1007/s11664-019-07204-8
 
6. M.M.Shi, J.Wang, S.R.Liu et al., Modern Phys.Lett.B, 33, 1950183 (2019).
https://doi.org/10.1142/S0217984919501835
 
7. C.Baban, G.I.Rusu, P.Prepelita, J. Optoelectron. Advan. Mater. 7, 817 (2005).
 
8. R.A.Chikwenze, P.A.Nwofe, P.E.Agbo et al., Intern. J. Mater. Sci. Appl/, 4, 101 (2015). 
https://doi.org/10.11648/j.ijmsa.20150402.15
 
9. V.V.Kosyak, M.M.Kolesnyk, A.S.Opanasyuk, J. Mater. Sci.: Mater. Electronics. 19, S375 (2008). 
 
10. V.Kosyak, Y.Znamenshchykov, A.Cerskus et al., J. Luminescence, 171, 176 (2016). 
https://doi.org/10.1016/j.jlumin.2015.11.027
 
11. Ki Cheol Park, Dae Young Ma, Kun Ho Kim, Thin Solid Films, 305, 201 (1997). 
https://doi.org/10.1016/S0040-6090(97)00215-0
 
12. R.Petrus, H.Ilchuk, A.Kashuba et al., J. Nano- Electron. Phys.. 11, 03020 (2019). 
https://doi.org/10.21272/jnep.11(3).03020
 
13. R.Yu.Petrus, H.A.Ilchuk, A.I.Kashuba et al., Optic. Spectr., 126, 220 (2019). 
https://doi.org/10.1134/S0030400X19030160
 
14. V.V.Brus, L.J.Pidkamin, S.L.Abashin et al., Opt. Mater.. 34, 1940 (2012). 
https://doi.org/10.1016/j.optmat.2012.06.007
 
15. V.V.Brus, M.N.Solovan, E.V.Maistruk et al., J. Rappich, Phys. Solid State, 34, 1947 (2014). 
https://doi.org/10.1134/S1063783414100072
 
16. J.S.Gonzalez, A.D.Parralejo, A.L.Ortiz, F.Guiberteau, Appl. Surf. Sci., 252, 6013 (2006). 
https://doi.org/10.1016/j.apsusc.2005.11.009
 
17. S.H.Wemple, M.DiDomenico, Phys. Rev. B., 3, 1338 (1971). 
https://doi.org/10.1103/PhysRevB.3.1338
 
18. M.Born, E.Wolf, Principles of Optics. Ch. II., Pergamon Press, Oxford (1975).
 
19. A.Ashour, N.El-Kadry, S.A.Mahmoud, Thin Solid Films, 269, 117 (1995). 
https://doi.org/10.1016/0040-6090(95)06868-6
 
20. C.S.Tepantlan, A.M.P.Gonzalez, I.V.Arreola, Revista Mexicana de Fisica, 54, 112 (2008).
 
21. D.T.F.Marple, J. Appl. Phys., 35, 539 (1964). 
https://doi.org/10.1088/1742-6596/286/1/012038
 
22. S.Adachi, T.Kimura, N.Suzuki, J. Appl. Phys., 74, 3435 (1993). 
https://doi.org/10.1063/1.354543
 
23. R.E.Treharne, A.Seymour-Pierce, K.Durose et al., J. Phys: Conf. Ser., 286, 012038 (2011). 
https://doi.org/10.1063/1.1713411

Current number: