Funct. Mater. 2020; 27 (2): 354-362.

doi:https://doi.org/10.15407/fm27.02.354

Influence of titanium diboride particles size on the structure of TiB2-(Fe-Mo) composite materials

O.P.Umanskyi1, M.S.Storozhenko1, O.E.Terentiev1, V.B.Tarelnyk2, V.P.Krasovskyy1, V.E.Sheludko1, I.S.Martsenyuk1, O.D.Kostenko1

1J.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03068 Kyiv, Ukraine
2Sumy National Agricultural University, 160 Kondratev Str., 40021 Sumy, Ukraine

Abstract: 

The influence of titanium diboride particles size (9-10 μm, 2-3 μm, 500-700 nm) on the structure formation of TiB2-80 wt.%(Fe-13 wt.%Mo) composite materials was investigated. The differential-thermal and electron-probe analyses have shown that a decrease in the size of TiB2 particles up to 2-3 μm does not substantially influence on the composite materials structure formation. The structure of the investigated composite materials consists of an iron-based matrix, TiB2 and Mo2FeB2 hard borides. The addition of nano-sized TiB2 particles (70-100 nm) is unreasonable because this promotes dissolution and recrystallization processes of titanium diboride; as a result, their size increases up to 5-6 μm and large amounts of Fe-Fe2B and Fe-Mo2FeB2 eutectics are formed.

Keywords: 
composite material, structure, titanium diboride, iron, molybdenum, eutectic.
References: 

1. L.Prakash, Fundamentals and General Applications of Hardmetals, in: Comprehensive Hard Materials, Elsevier, Oxford (2014).
https://doi.org/10.1016/B978-0-08-096527-7.00002-7
 
2. N.Wu, F.Xue, J.Wang et al., Mater. Sci. Eng., 743, 546 (2019).
https://doi.org/10.1016/j.msea.2018.11.067
 
3. S.Liu, D.Liu, Int. J. Refract. Met. Hard Mater., 82, 273 (2019).
https://doi.org/10.1016/j.ijrmhm.2019.04.020
 
4. T.P.Grebenok, T.V.Dubovik, M.S.Kovalchenko et al., Powder Metall. Metal Ceram., 55, 48 (2016).
https://doi.org/10.1007/s11106-016-9779-y
 
5. J.M.Sanchez, I.Azcona, F.Castro, J. Mater. Sci., 35, 9 (2000).
https://doi.org/10.1023/A:1004763709854
 
6. V.P.Konoval, V.Zh.Shemet, B.Grushko et al., Powder Metall. Metal Ceram., 51, 429 (2012).
https://doi.org/10.1007/s11106-012-9452-z
 
7. M.S.Storozhenko, A.P.Umanskii, A.V.Lavrenko et al., Powder Metall. Metal Ceram., 50, 719 (2012).
https://doi.org/10.1007/s11106-012-9381-x
 
8. A.P.Umanskii, A.E.Terentiev, M.Storozhenko, I.S.Marsenyuk, Powder Metall. Metal Ceram., 53, 359 (2015).
https://doi.org/10.1007/s11106-014-9624-0
 
9. X.Wang, H.Shun, C.Li et al., Surf. Coat. Technol., 201, 2500 (2006).
https://doi.org/10.1016/j.surfcoat.2006.04.025
 
10. C.M.Chun, N.V.Bangaru, N.Thirumalai et al., Int. J. Appl. Ceram. Technol., 5, 597 (2008).
https://doi.org/10.1111/j.1744-7402.2008.02217.x
 
11. I.M.Spiridonova, A.D.Panasyuk, E.V.Sukhovaya, A.P.Umanskii, Stabilnost Kompozitsionnykh Materialov, Svindler A.L., Dnepropetrovsk (2011).
 
12. P.S.Kislyi (editor), Kermety, Naukova Dumka, Kiev (1985).
 
13. A.Panasyuk, O.Umanskyi, M.Storozhenko, V.Akopyan, Key Eng. Mater., 527, 9 (2013).
https://doi.org/10.4028/www.scientific.net/KEM.527.9
 
14. M.S.Storozhenko, Powder Metall. Metal Ceram., 56, 617 (2017).
https://doi.org/10.1007/s11106-017-9847-y
 
15. M.S.Storozhenko, O.P.Umanskyi, O.U.Stelmach et al., Powder Metall. Metal Ceram., 57, 200 (2018).
https://doi.org/10.1007/s11106-018-9969-x
 
16. M.S.Storozhenko, A.P.Umanskii, A.E.Terentiev, I.M.Zakiev, Powder Metall. Metal Ceram., 56, 60 (2017).
https://doi.org/10.1007/s11106-017-9872-x
 
17. N.Wu, F.Xue, H.Yang et al., J. Ruan. Ceram. Int., 45, 1370 (2019).
https://doi.org/10.1016/j.ceramint.2018.08.270
 
18. H.Yu, W.Liu, Y.Zheng, Mater. Des., 32, 3521 (2011).
https://doi.org/10.1016/j.matdes.2011.02.034
 
19. E.I.Gladyshevskii, T.F.Fedorov, Y.B.Kuz'ma, R.V.Skolozdra, Sov. Powder Metall. Met. Ceram., 5, 305 (1966).
 
20. A.Antoni-Zdziobek, M.Gospodinova, F.Bonnet, F.Hodaj, J. Phase Equilib. Diff., 35, 701 (2014).
https://doi.org/10.1007/s11669-014-0355-1
 
21. A.Antoni-Zdziobek, M.Gospodinova, F.Bonnet, F.Hodaj, J. Alloys Compd., 657, 302 (2016).
https://doi.org/10.1016/j.jallcom.2015.10.104

Current number: