Funct. Mater. 2020; 27 (2): 363-367.

doi:https://doi.org/10.15407/fm27.02.363

Subsolidus structure of the Ni-Cr-O-Al2O3 system and justification of advanced composites

S.M.Logvinkov1, G.N.Shabanova2, A.N.Korohodska2, A.A.Ivashura1, M.N.Ivashura3

1S.Kuznets Kharkiv National University of Economics, 9a Nauky Ave., 61000 Kharkiv, Ukraine
2National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine
3National University of Pharmacy, 53 Pushkinska Str., 61002 Kharkiv, Ukraine

Abstract: 

The thermodynamic basing of the use of heat-resistant nickel alloys in composite materials with a metal matrix requires a detailed consideration of the subsolidus structure of a multicomponent metal-oxide system containing nickel and chromium as the base metal components, and corundum fiber Ni-Cr-O-Al2O3 are presented. The introduction of corundum fiber into the metal chromium-nickel matrix as a complex modifier - a reinforcing component that also functions as an antioxidant significantly increases both the operating temperature and the corrosion resistance of the composite material.

Keywords: 
metal matrix, corundum fiber, heat-resistant alloys, metal-oxide system, subsolidus structure, spinel.
References: 

1. D.Gay, Composite Materials: Design and Applications, CRC Press, Boca Raton (2014).
https://doi.org/10.1201/b17106
 
2. S.T.Peters, Handbook of Composites, Springer Science, Tornbridge (2013).
 
3. W.Bolton, R.A.Higgins, Materials for Engineers and Technicians, Routledge, Abington (2014).
https://doi.org/10.4324/9781315771687
 
4. A.Riley, Metal, Ceramic and Polymeric Composites for Various Uses, Scitus Academics, Wilmington (2017).
 
5. G.Guisbiers, R.Mendoza-Perez, L.Bazan-Diaz et al., J. Phys. Chem. C, 121, 6930 (2017).
https://doi.org/10.1021/acs.jpcc.6b09115
 
6. Y.Ustinovshikov, J. Alloys Compd, 543, 227 (2012).
https://doi.org/10.1016/j.jallcom.2012.05.120
 
7. A.Mittal, G.J.Albertsson, G.Gupta, S.Seetharaman, Metall. Mater. Trans. B, 45, 338 (2014).
https://doi.org/10.1007/s11663-014-0027-x
 
8. L.Kjellqvist, M.Selleby, B.Sundman, Calphad, 32, 577 (2008).
https://doi.org/10.1016/j.calphad.2008.04.005
 
9. L.Feng, J.Junhong, Yi.Gewen et al., Tribol. Int., 84, 1 (2015).
https://doi.org/10.1016/j.triboint.2014.11.023
 
10. D.Talbot, J.Talbot, Corrosion Science and Technology, CRC Press, Boca Raton (2018).
 
11. A.S.Berezhnoy, Multicomponent Oxide Systems, Naukova Dumka, Kiev (1970).
 
12. A.H.Fadhil, M.A.Aswad, A.O.Al-Roubaiy, The Iraqi J. Mech. Mater.Engin. (IQJFMME), 16, 45 (2016).
 
13. H.Saalfeld, Z.Kristallogr, Cryst. Mater., 120, 342 (2010).
 
14. R.A.Tarnopolskaya, in: Collection of Scientific Works of UkrNIIogneuporov, Metallurgy, Moscow, 10, 3 (1967) [ in Russian].

Current number: