Funct. Mater. 2020; 27 (2): 403-411.

doi:https://doi.org/10.15407/fm27.02.403

Purification of metallurgical grade silicon by gas blowing and slag refining method: progress of researches

Yiyan Li1,2, Yaqiong Li1,2, Lifeng Zhang1,2,3

1School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, 100083 Beijing, China
2Beijing International Center of Advanced and Intelligent Manufucturing of High Quality Steel Materials (ICSM), 100083 Beijing, China
3State Key Lab of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao, China

Abstract: 

The influence of various factors, such as gas composition, time and temperature, on boron removal during refining of metallurgical silicon slag is analyzed. The prospects of such technology are investigated.

Keywords: 
crystalline silicon, gas blowing-slag refining, removal of boron, review
References: 

1. A.Pang, M.Pan, S.Guo et al., J.Xiamen University (Natual Science), 48, 543 (2009).
 
2. I.C.Santos, A.P.Goncalves, C.S.Santos et al., Hydrometallurgy, 23, 237 (1990).
https://doi.org/10.1016/0304-386X(90)90007-O
 
3. M.D.Johnston, M.Barati, Solar Ener. Mater.Solar Cells, 94, 2085 (2010).
https://doi.org/10.1016/j.solmat.2010.06.025
 
4. M.D.Johnston, M.Barati, J. Non-Crystal. Solids, 357, 970 (2011).
https://doi.org/10.1016/j.jnoncrysol.2010.10.033
 
5. Y.Dai, Y.Bin, Metallurg. Industry Press, 162 (2000).
 
6. K.Suzuki, K.Sakaguchi, T.Nakagiri, N.Sano, J. Jpn. Inst. Met., 54, 161 (1990).
https://doi.org/10.2320/jinstmet1952.54.2_161
 
7. H.Zhang, Dalian University of Technology (2009).
 
8. K.Visnovec, Master, 58, 93 (2012).
https://doi.org/10.1016/S0011-5029(12)00015-6
 
9. L.Damoah, L.Zhang, Metallurg. Mater. Trans. B, 46, 2514 (2015).
https://doi.org/10.1007/s11663-015-0447-2
 
10. S.Q.Wang, L.F.Zhang, S.F.Yang et al., J. Iron Steel Res., 10, 866 (2012).
 
11. L.Zhang, A.C.Solar Energy Mater. Solar Cells, 92, 1450 (2008).
https://doi.org/10.1016/j.solmat.2008.06.006
 
12. A.Dong, L.Zhang, L.Damoah. JOM, 63, 23 (2011).
https://doi.org/10.1007/s11837-011-0006-5
 
13. C.P.Khattak, F.Schmid, Proc.- Electrochem. Soc., 83-11, 83 (1983).
https://doi.org/10.1017/S0141347300008855
 
14. G.Flamant, V.Kurtcuoglu, J.Murray, A.Steinfeld, Solar Energ. Mater. Solar Cells, 90, 2099 (2006).
https://doi.org/10.1016/j.solmat.2006.02.009
 
15. N.Nakamura, H.Baba, Y.Sakaguchi, Y.Kato, Mater, Trans., 45, 858 (2003).
https://doi.org/10.2320/matertrans.45.858
 
16. L.Zhang, Y.Li, Metallurgical Industry Press (2017).
 
17. K.Morita, T.Miki, Intermetal., 11, 1111 (2003).
https://doi.org/10.1016/S0966-9795(03)00148-1
 
18. J.Wu, W.Ma, B.Yang, Trans. Nonferr. Metals Soc. China, 19, 463 (2009).
https://doi.org/10.1016/S1003-6326(08)60296-4
 
19. M.Tanahashi, T.Fujisawa, C.Yamauchi, Metallurg. Mater. Trans.B, 45, 629 (2014).
https://doi.org/10.1007/s11663-013-9966-x
 
20. H.Nishimoto, K.Morita, John Wiley & Sons, 701 (2011).
 
21. J.Wu, W.Ma, Y.Li et al., Trans. Nonferr. Metals Soc. China, 23, 260 (2013).
https://doi.org/10.1016/S1003-6326(13)62454-1
 
22. M.Gasik, Handbook of Ferroalloys: Theory and Technologys, 190 (2013).
 
23. E.F.Nordstrand, M.Tangstad, Metallurg. Mater. Trans.B, 43, 814 (2012).
https://doi.org/10.1007/s11663-012-9671-1
 
24. K.Suzuki, T.Kumagai, N.Sano, Isij International, 32, 630 (1992).
https://doi.org/10.2355/isijinternational.32.630
 
25. J.Safarian, K.Tang, J.E.Olsen et al., Metallurg. Mater. Trans. B, 47, 1 (2014).
 
26. Z.Y.Chen, K.Morita, Silicon, 10, 1809 (2018).
https://doi.org/10.1007/s12633-017-9681-3
 
27. Sortland, M.Tangstad, Metallurg. Mater. Trans. E, 1, 211 (2014).
https://doi.org/10.1007/s40553-014-0021-x
 
28. Zhiyuan Chen, K.Morita, Metallurg. Mater. Trans. E, 3, 1 (2016).
 
29. N.D.Spencer, R.C.Schoonmaker, G.A.Somorjai, J. Catal., 74, 129, (1982).
 
30. H.Bielawa, O.Hinrichsen, A.Birkner, M.Muhler, Cheminform, 32, 1061 (2010).
https://doi.org/10.1002/chin.200126020
 
31. M.Bowker, I.B.Parker, K.C.Waugh, Appl. Catal., 14, 101 (1985).
https://doi.org/10.1016/S0166-9834(00)84348-1
 
32. H.Zhu, R.Kee, V.Janardhanan et al., J. Electrochem. Soc., 152, A2427 (2005).
https://doi.org/10.1149/1.2116607
 
33. T.Viana, A.Leandro, Y.Tokuda et al., ISIJ Intern., 49, 777 (2009).
https://doi.org/10.2355/isijinternational.49.777
 
34. J.Wu, W.Ma, B.Yang et al., Nonferr. Met. Soc. China, 19, 463 (2009).
https://doi.org/10.1016/S1003-6326(08)60296-4
 
35. M.Fang, C.Lu, L.Huang et al., Ind. Engin. Chem. Res., 53, 12054 (2014).
https://doi.org/10.1021/ie404427c
 
36. J.Wu, F.Wang, Z.Chen et al., Fluid Phase Equilibria, 404, 70 (2015).
https://doi.org/10.1016/j.fluid.2015.06.040
 
37. E.J.Jung, B.M.Moon, S.H.Seok, D.J.Min, Energy, 66, 35 (2014).
https://doi.org/10.1016/j.energy.2013.08.010
 
38. L.Augusto, V.Teixeira, K.Morita, ISIJ Intern., 49, 783 (2009).
https://doi.org/10.2355/isijinternational.49.783
 
39. D.Luo, L.Ning, Y.Lu et al., Trans. Nonferr. Metals Soc. China, 21, 1178 (2011).
https://doi.org/10.1016/S1003-6326(11)60840-6
 
40. Y.Li, J.Wu, W.Ma, Separ. Scien. Techn., 49, 1946 (2014).
https://doi.org/10.1080/01496395.2014.904877
 
41. L.K.Jakobsson, M.Tangstad, Metallurg. Mater. Trans. B, 45, 1644 (2014).
https://doi.org/10.1007/s11663-014-0088-x
 
42. J.Cai, J.-t.Li, W.-h.Chen et al., Trans. Nonfer. Metals Soc. China, 21, 1402 (2011).
https://doi.org/10.1016/S1003-6326(11)60873-X
 
43. G.J.W.Kor, Metallurg. Trans. B, 10B, 367 (1979).
https://doi.org/10.1007/BF02652507
 
44. C.Yin, B.Hu, X.Huang, J. Semicond., 32, 092003-1 (2011).
https://doi.org/10.1088/1674-4926/32/9/092003
 
45. L.Zhang, Y.Tan, F.M.Xu et al., Separ. Scien. Techn., 48, 1140 (2013).
https://doi.org/10.1080/01496395.2012.714438
 
46. Y.Wang, X.Ma, K.Morita, Metallurg. Mater. Trans. B, 45, 334 (2014).
https://doi.org/10.1007/s11663-014-0031-1
 
47. Y.Wang, K.Morita, J. Sustain. Metallurg., 1, 126 (2015).
https://doi.org/10.1007/s40831-015-0015-7
 
48. L.Huang, H.Lai, C.Gan et al., Separ. Purification Techn., 170, 408 (2016).
https://doi.org/10.1016/j.seppur.2016.07.004
 
49. Z.Ding, W.Ma, K.Wei et al., J. Non-Crystall. Solids, 358, 2708 (2012).
https://doi.org/10.1016/j.jnoncrysol.2012.06.031
 
50. H.Lai, L.Huang, C.Lu et al., JOM, 68, 1 (2015).
https://doi.org/10.1007/s11837-015-1656-5
 
51. J.Wu, F.Wang, W.Ma et al., Metallurg. Mater. Trans. B, 47, 1796 (2016).
https://doi.org/10.1007/s11663-016-0615-z
 
52. Y.Li, J.Wu, W.Ma, B.Yang, Silicon, 7, 247 (2015).
https://doi.org/10.1007/s12633-014-9222-2
 
53. J.Safarian, G. Tranell, M. Tangstad, Metallurg. Mater. Trans. E, 2, 109 (2015).
https://doi.org/10.1007/s40553-015-0048-7
 
54. M.Li, T.Utigard, M.Barati, Metallurg. Mater. Trans. B, 45, 221 (2014).
https://doi.org/10.1007/s11663-013-0011-x
 
55. X.Ma, T.Yoshikawa, K.Morita, Separ. Purification Techn., 125, 264 (2014).
https://doi.org/10.1016/j.seppur.2014.02.003
 
56. X.Ma, T.Yoshikawa, K.Morita, Metallurg. Mater. Trans. B, 1 (2013).
 
57. J.Li, P.Cao, P.Ni et al., Separation Science & Technology, ?????? (2016).
 
58. C.Khattak, D.Joyce, F.Schmid, Solar Energy Mater. Solar Cells, 74, 77 (2002).
https://doi.org/10.1016/S0927-0248(02)00051-X
 
59. M.Xu, Kunming University of Science and Technology (2016).
 
60. E.F.Nordstrand, M.Tangstad, Metallurg. . Mater. Trans.B, 43, (2012).
https://doi.org/10.1007/s11663-012-9671-1
 

Current number: