Funct. Mater. 2020; 27 (2): 412-416.

doi:https://doi.org/10.15407/fm27.02.412

Diffraction and absorption of X-rays in a thin-layer system Ni(1-x)Wx/TiN

V.A.Finkel, T.V.Sukhareva, M.S.Sungurov

National Science Center "Kharkiv Institute of Physics and Technology", National Academy of Sciences of Ukraine, Kharkiv, Ukraine

Abstract: 

The foundations of methodology for studying two-layer objects like "substrate-coating" through combination of methods of absorption and diffraction spectroscopy in a single experiment are developed. It is shown that X-ray diffraction and absorption spectra for Ni(1-x)Wx/TiN systems based on ferromagnetic Ni0.95W0.05 and paramagnetic Ni0.905W0.095 alloys are qualitatively different. In the Ni0.95W0.05/TiN system, the substrate Ni0.95W0.05 has a cubic texture, the degree of perfection of which does not depend on the thickness of the TiN coating. In the Ni0.905W0.095/TiN system, an abnormal X-ray optical effect was discovered - an increase in the intensity of the diffraction lines of the substrate Ni0.905W0.095 with growing the TiN coating thickness. The nature and mechanism of the detected effect are established.

Keywords: 
abnormal X-ray optical effect, "substrate-coating" system, Ni-W alloys, titanium nitride, stacking faults.
References: 

1. A.O.Ljaduola, R.Thompson, A.Goyal et al., Phys. C: Superconductivity, 403, 163 (2004). 
https://doi.org/10.1016/j.physc.2003.12.003
 
2. V.V.Derevyanko, M.S.Sungurov, T.V.Sukhareva, V.A.Finkel, Solid State Phys., 60, 1930 (2018).
https://doi.org/10.1134/S1063783418100062
https://doi.org/10.1134/S1063783418030083
 
3. Ruihuan Li, Song Lu, Dongyoo Kim et al., J. Phys.: Condens. Matter, 28, 395001 (2016). 
https://doi.org/10.1088/0953-8984/28/39/395001
 
4. A.Goyal, R.Feenstra, M.Paranthaman et al., Phys. C, 382, 251 (2002).
https://doi.org/10.1016/S0921-4534(02)00626-3
 
5. V.Subramanya Sarma, J.Eickemeyer, C.Mickel et al., Mater. Scie. Engin.: A, 380, 30 (2004). 
https://doi.org/10.1016/j.msea.2004.05.024
 
6. Jianan Liu, Wei Liu, Guoyi Tang, Rufei Zhu, Physica C, 497, 119 (2014). 
https://doi.org/10.1016/j.physa.2014.03.071
https://doi.org/10.1016/j.physc.2013.12.001
https://doi.org/10.1016/j.physc.2013.09.004
 
7. F.K.Richtmyer, Phys. Rev., 18, 13 (1921).
https://doi.org/10.1103/PhysRev.18.13
 
8. V.L.Ginzburg, Soviet Physics JETP, 34, 1096 (1958).
 
9. V.A.Finkel, A.M.Bovda, V.V.Derevyanko et al., Fuctional Materials, 19, 109 (2012).
 
10. V.A.Finkel, V.V.Derevyanko, M.S.Sungurov et al., Functional Materials, 20, 103 (2013). 
https://doi.org/10.15407/fm20.01.103
 
11. H.L.Suo, Y.Zhao, M.Liu, Supercond. Sci. Technol., 21, 025005 (2008).
https://doi.org/10.1088/0953-2048/21/02/025005
 
12. M.S.Sunhurov, V.V.Derevyanko, S.A.Leonov et al., Techn. Phys. Lett., 40, 797 (2014).
https://doi.org/10.1134/S1063785014090314
 
13. M.S.Sunhurov, V.A.Finel, Technical Physics, 63, 1216 (2018).
https://doi.org/10.21883/JTF.2018.08.46312.182.
 
14. I.I.Axenov, A.A.Andreev, A.A.Romanov et al., Ukr. Phys. J., 24, 515 (1979).
 
15. V.M.Khoroshikh, S.A.Leonov, V.A.Belous, Problems of Atomic Science and Technology, 17, 72 (2008).
 
16. F.R.Aliaj, N.Syla, H.Oettel, T.Dilo, Surf. Interface Anal., 49, 1135 (2017).
https://doi.org/10.1002/sia.6292
 
17. D.Hudson, Statistics. Lectures on Elementary Statistics and Probability, Geneva: CERN, 1963
 
18. R.Juskenas, I.Valsiunas, V.Pakstas, R.Giraitis, Electrochim. Acta, 54, 2616 (2009). 
https://doi.org/10.1016/j.electacta.2008.10.060
 
19. H.A.Wriedt, J.L.Murray, Bulletin of Alloy Phase Diagrams, 8, 378 (1987). 
https://doi.org/10.1007/BF02869274
 
20. G.V.Naik, B.Saha, J.Liu et al., PNAS, 111, 7546 (2014). 
https://doi.org/10.1073/pnas.1319446111

Current number: