Funct. Mater. 2020; 27 (2): 424-433.

doi:https://doi.org/10.15407/fm27.02.424

Smoothing photoluminescence spectra and their derivatives for identification of individual bands

A.V.Kovalenko, S.M.Vovk, Ye.G.Plakhtii

Oles Honchar Dnipro National University, 72 Gagarin Ave., 49010 Dnipro, Ukraine

Abstract: 

Methods for smoothing the experimental photoluminescence spectra and their derivatives, which are based on the Tikhonov regularization method, are proposed. The performances of the proposed methods and Savitzky-Golay's method are compared by numerical simulations of photoluminescence spectra and their derivatives. Effective smoothing of the experimental curves made it possible to carry out the decomposition of the photoluminescence spectra of ZnO and ZnO:Mn nanocrystals using the derivative spectroscopy method into elementary bands. Thus, the possibility to detect individual photoluminescence bands on the basis of a single measurement is shown. It was found that the experimental photoluminescence spectra of ZnO and ZnO:Mn contain two separate bands: Emax = 2.13 eV (λmax = 583 nm) and Emax = 2.30 eV (λmax = 540 nm), which are associated with oxygen vacancies or oxygen interstitials and zinc interstitials, respectively. Three individual bands are also detected in the experimental photoluminescence spectra of ZnO:Mn nanocrystals with Emax = 2.34 eV (λmax = 530 nm), Emax = 2.19 eV (λmax = 567 nm) and Emax = 1.97 eV (λmax = 630 nm), which are associated with the Mn dopant.

Keywords: 
photoluminescence, emission band, Savitzky-Golay method, Tikhonov regularization, derivative spectroscopy.
References: 

1. D.V.Korbutyak, A.V.Kovalenko, S.I.Budzulyak et al., Ukr. J. Phys., 7, 48 (2012).
 
2. Q.Zhou, Z.Bai, W.G.Lu et al., Adv. Mater, 41, 9163 (2016). 
https://doi.org/10.1002/adma.201602651
 
3. N.Deopa, A.S.Rao, A.Choudhary et al., Mater. Res. Bull., 100, 206 (2018). 
https://doi.org/10.1016/j.materresbull.2017.12.019
 
4. S.Adachi, J. Luminescence, 202, 263 (2018). 
https://doi.org/10.1016/j.jlumin.2018.05.053
 
5. Z.Wang, H.Zeng, L.Sun, J. Mater. Chem.C, 3, 1157 (2015). 
https://doi.org/10.1039/C4TC02536A
 
6. D.A.Skoog, F.J.Holler, S.R.Crouch, Principles of Instrumental Analysis, Cengage learning, USA (2017).
 
7. V.Sharma, A.Das, V.Kumar et al., Physica B, 535, (2018). 
https://doi.org/ 10.1016/j.physb.2017.07.019
 
8. J.Kaszewski, P.Kielbik, E.Wolska et al., Opt. Mater., 80, 77 (2018). 
https://doi.org/10.1016/j.optmat.2018.04.028
 
9. M.V.Fok, Trudy Fizicheskogo Instituta RAN P.N.Lebedeva Ross. Akad. Nauk, 59, 3 (1972).
 
10. O.M.Bordun, B.O.Bordun, I.Y.Kukharskyy et al., J. Appl. Spectrosc., 84, 46 (2017). 
https://doi.org/10.1007/s10812-017-0425-3
 
11. G.Talsky, Derivative Spectroscopy: Low and Higher Order, VCH Publishers, Wiley (1994).
https://doi.org/10.1002/3527601570
 
12. H.H.Perkampus, UV-VIS Spectroscopy and its Applications, Springer Science & Business Media, Berlin (2013).
 
13. A.Savitzky, M.J.Golay, Anal. Chem., 36, 1627 (1964). https://doi.org/10.1021/ac60214a047
https://doi.org/10.1021/ac60214a047
 
14. R.W.Schafer, IEEE Signal Proc. Mag, 28, 111 (2011). https://doi.org/10.1109/MSP.2011.941097
https://doi.org/10.1109/MSP.2011.941097
 
15. A.N.Tikhonov, Dokl. Akad. Nauk, 151, (1963).
 
16. A.N.Tikhonov, A.V.Goncharsky, V.V.Stepanov et al., Springer Science & Business Media (2013).
 
17. O.V.Kovalenko, S.M.Vovk, Ye.G.Plakhtii, J. Phys. Electron., 26, 73 (2018). 
https://doi.org/10.15421/331828
 
18. P.S.Sampaio, A.Soares, A.Castanho et al., Food Chem., 242, 196 (2018). 
https://doi.org/10.1016/j.foodchem.2017.09.058
 
19. H.Deng, J.Sun, P.Li et al., Opt. Appl., 46, 353 (2016). 
https://doi.org/10.5277/oa160303
 
20. J.Causse, O.Thomas, A.V.Jung et al., Water. Res, 108, 312 (2016). 
https://doi.org/10.1016/j.watres.2016.11.010
 
21. K.Ichimura, Bull. Chem. Soc. Jpn., 90, 411 (2017). 
https://doi.org/10.1246/bcsj.20160414
 
22. K.Ichimura, Bull. Chem. Soc. Jpn., 89, 549 (2016). 
https://doi.org/10.1246/bcsj.20160032
 
23. H.Yang, S.Yang, J.Kong et al., Nat. Protoc,, 10, 382 (2015). 
https://doi.org/10.1038/nprot.2015.024
 
24. R.Olmi, M.Bittelli, IEEE Trans. Dielectr. Electr. Insul., 22, 3334 (2015). 
https://doi.org/10.1109/TDEI.2015.004729
 
25. Y.Hong, Y.Chen, L.Yu et al., Remote Sens., 10, 479 (2018). 
https://doi.org/10.3390/rs10030479
 
26. S.M.Vovk, Rad. Electron. Comp . Sci. Control, 3, 91 (2017). 
 
27. S.C.Tsai, Y.L.Song, C.S.Tsai et al., J. Mater. Sci., 39, 3647 (2004) 
https://doi.org/10.1023/B:JMSC.0000030718.76690.11
 
28. V.Yu.Vorovsky, A.V.Kovalenko, A.I.Kushneryov et al., Functional Materials, 25, 61 (2018). 
https://doi.org/10.15407/fm25.01.061
 
29. A.V.Kovalenko, Ye.G.Plakhtii, S.M.Vovk, Ukr. J. Phys.Opt., 19, 133 (2018). 
https://doi.org/10.3116/16091833/19/3/133/2018
 
30. P.Rodnyi, K.Chernenko, O.Klimova et al., Radiat. Meas., 90, 136 (2016). 
https://doi.org/10.1016/j.radmeas.2016.01.021
 
31. C.Chandrinou, N.Boukos, C.Stogios et al., Microelectron J., 40, 296 (2009).
https://doi.org/10.1016/j.mejo.2008.07.024
 
32. C.Ton-That, L.Weston, M.R.Phillips, Phys. Rev, B, 86, 115205 (2012).
https://doi.org/10.1103/PhysRevB.86.115205
 
33. A.K.Singh, V.Viswanath, V.C.Janu, J. Luminescence, 129, 874 (2009). 
https://doi.org/10.1016/j.jlumin.2009.03.027
 
34. M.A.Reshchikov, H.Morkoc, B.Nemeth et al., Physica B, 401-402, 358 (2007). 
https://doi.org/10.1016/j.physb.2007.08.187
 
35. A.J.Reddy, M.A.Kokila, Y.Nagabhushana et al., Spectrochim. Acta A, 79, 476 (2011). 
https://doi.org/10.1016/j.saa.2011.03.014
 
36. X.T.Zhang, Y.C.Liu, J.Y.Zhang et al., J. Cryst. Growth, 254, 80 (2003). 
https://doi.org/10.1016/S0022-0248(03)01143-6
 
37. N.X.Sang, L.Ph.Sang, N.M.Quan et al., VNU J. Sci. Math. Phys., 34, 37 (2018). 
https//doi.org/ 10.25073/2588-1124/vnumap.427

Current number: