Funct. Mater. 2020; 27 (3): 473-481.

doi:https://doi.org/10.15407/fm27.03.473

Graphite/n-InSe photosensitive junctions fabricated by transferring dry drawn graphite film onto as-cleaved surface of InSe

M.Z.Kovalyuk1, P.I.Savitskii1, M.V.Tovarnitskii1, O.S.Lytvyn2,3

1I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 5 I.Vilde Str., 58001 Chernivtsi, Ukraine
2V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Prosp. Nauky, 03028 Kyiv, Ukraine
3B.Grinchenko Kyiv University, 18/2 Bulvarno-Kudriavska Str., 04053 Kyiv, Ukraine

Abstract: 

We report on reproducible fabrication and characterization of new photosensitive Schottky-type junctions prepared by an extremely simple technique when a substrate-free dry drawn graphite film is transferred from water surface onto as-cleaved van der Waals surface (0001) of n-InSe substrate. Electrical and photoelectric characterization of the obtained junctions is investigated using current-voltage, capacitance-voltage and photosensitivity spectra measurements. It is revealed that the thin graphite film transferred onto the n-InSe (0001) substrate creates a Schottky junction with a potential barrier of 0.49 eV and rectification ratio of RR ~ 200 at 0.9 V. An abrupt rectifying electrical junction graphite/n-InSe is formed due to van der Waals attraction forces between the thin graphite film and atomically smooth n-InSe (0001) surface. The graphite/n-InSe junctions generated short-circuit current density of Jsc = 0.29 mA/cm2, open-circuit voltage of Voc = 0.31 V and filling factor of FF = 0.33 under 80 mW/cm2 white light illumination. The junctions exhibit photosensitivity in the near-infrared and visible spectral ranges, making them promising for photodetector applications. Their energy band diagram is built up.

Keywords: 
indium selenide, heterojunction, photosensitivity.
References: 

1. A.K.Geim, I.V.Grigorieva, Nature, 499, 419 (2013).
https://doi.org/10.1038/nature12385

2. C.W.Lin, Z.Zhao, J.Kim, J.Huang, Sci. Rep., 4, 3812 (2014).
https://doi.org/10.1038/srep03812

3. O.Madelung, Semiconductor: Data Handbook, 3rd ed., Springer-Verlag, Berlin (2004).
https://doi.org/10.1007/978-3-642-18865-7

4. G.W.Mudd, S.A.Svatek, T.Ren et al., Adv. Mater., 25, 5714 (2013).
https://doi.org/10.1002/adma.201302616

5. M.Hamer, E.Tovari, M.Zhu et al., Nano Lett., 18, 3950 (2018).
https://doi.org/10.1021/acs.nanolett.8b01376

6. D.A.Bandurin, A.V.Tyurnina, G.L.Yu et al., Nature Nanotech., 12, 223 (2017).
https://doi.org/10.1038/nnano.2016.242

7. J.F.Sanchez-Royo, G.Munoz-Matutano, M.Brotons-Gisbert et al., Nano Res., 7, 1556 (2014).
https://doi.org/10.1007/s12274-014-0516-x

8. G.W.Mudd, A.Patane, Z.R.Kudrynskyi, et al., Appl. Phys. Lett., 105, 221909 (2014).
https://doi.org/10.1063/1.4903738

9. A.I.Dmitriev, V.V.Vishnjak, G.V.Lashkarev et al., Phys. Solid State, 53, 622 (2011).
https://doi.org/10.1134/S1063783411030085

10. N.Balakrishnan, Z.R.Kudrynskyi, M.W.Fay et al., Adv. Opt. Mater., 2, 1064 (2014).
https://doi.org/10.1002/adom.201400202

11. V.N.Katerinchuk, M.Z.Kovalyuk, Phys. Status Solidi A, 133, K45 (1992).
https://doi.org/10.1002/pssa.2211330128

12. V.M.Katerynchuk, Z.R.Kudrynskyi, Z.D.Kovalyuk, J. Nano-Electron.Phys., 4, 02042 (2012).

13. A.N.Obraztsov, E.A.Obraztsova, A.V.Tyurnina, A.A.Zolotukhin, Carbon, 45, 2017 (2007).
https://doi.org/10.1016/j.carbon.2007.05.028

14. T.Paulmier, J.M.Bell, P.M.Fredericks, Thin Solid Films, 515, 2926 (2007).
https://doi.org/10.1016/j.tsf.2006.08.027

15. H.C.Semmelhack, R.Hohne, P.Esquinazi et al., Carbon, 44, 3064 (2006).
https://doi.org/10.1016/j.carbon.2006.05.004

16. R.Yatskiv, V.V.Brus, M.Verde et al., Carbon, 77, 1011 (2014).
https://doi.org/10.1016/j.carbon.2014.06.017

17. S.Tongay, T.Schumann, A.F.Hebard, Appl. Phys. Lett., 95, 222103 (2009).
https://doi.org/10.1063/1.3268788

18. V.V.Brus, P.D.Maryanchuk, Appl. Phys. Lett., 104, 173501 (2014).
https://doi.org/10.1063/1.4872467

19. V.V.Brus, P.D.Maryanchuk, Carbon, 78, 613 (2014).
https://doi.org/10.1016/j.carbon.2014.07.021

20. G.Zheng, L.Hu, H.Wu, X.Xie, Y.Cui, Energy Environ. Sci., 4, 3368 (2011).
https://doi.org/10.1039/c1ee01853a

21. Y.Wang, H.Zhou, Energy Environ. Sci., 4, 1704 (2011).
https://doi.org/10.1039/c0ee00759e

22. K.Uosaki, M.Koinuma, J. Appl. Phys., 74, 1675 (1993).
https://doi.org/10.1063/1.354820

23. Z.D.Kovalyuk, O.A.Politanska, V.G.Tkachenko et al., J. Nucl. Mater., 385, 489 (2009).
https://doi.org/10.1016/j.jnucmat.2008.12.036

24. Z.D.Kovalyuk, O.A.Politanska, O.N.Sydor, V.T.Maslyuk, Semiconductors, 42, 1292 (2008).
https://doi.org/10.1134/S1063782608110092

25. P.I.Savitskii, Z.D.Kovalyuk, I.V.Mintyanskii, Inorg. Mater., 32, 361 (1996).

26. O.N.Sydor, O.A.Sydor, Z.D.Kovalyuk, V.I.Dubinko, Semiconductors, 48, 239 (2014).
https://doi.org/10.1134/S1063782614020249

27. S.M.Sze, K.K.Ng, Physics of Semiconductor Devices, John Wiley & Sons, New Jersey (2007).

28. A.P.Bakhtinov, V.M.Vodopyanov, Z.R.Kudrynskyi et al., Phys. Status Solidi A, 211, 342 (2014).
https://doi.org/10.1002/pssa.201330081

29. M.A.Lampert, P.Mark, Current Injection in Solids, Academic Press, New York (1970).

30. D.Errandonea, A.Segura, V.Munoz, A.Chevy, Phys. Rev. B, 60, 15866 (1999).
https://doi.org/10.1103/PhysRevB.60.15866

31. O.Lang, A.Klein, C.Pettenkofer et al., J. Appl. Phys., 80, 3817 (1996).
https://doi.org/10.1063/1.363335

32. B.Abay, H.S.Guder, H.Efeoglu, Y.K.Yogurtcu, J. Phys. D: Appl.Phys., 32, 2942 (1999).
https://doi.org/10.1088/0022-3727/32/22/317

33. Z.D.Kovalyuk, V.M.Katerynchuk, I.V.Mintyanskii et al., Mater. Sci. Eng. B, 118, 147 (2005).
https://doi.org/10.1016/j.mseb.2004.12.024

34. V.L.Bonch-Bruevich, S.G.Kalashnikov, Physics of Semiconductors, Nauka, Moscow (1990) [in Russian].

35. R.Yatskiv, J.Grym, Appl. Phys. Lett., 101, 162106 (2012).
https://doi.org/10.1063/1.4761958

Current number: