Funct. Mater. 2020; 27 (3): 559-566.

doi:https://doi.org/10.15407/fm27.03.559

Surface polaritons in optical-anisotropic MgxZn1-xO/6H-SiC structures

O.V.Melnichuk1, L.Yu.Melnichuk1, N.O.Korsunska2, L.Yu.Khomenkova2,3, Ye.F.Venger2

1M. Gogol State University of Nizhyn, 2 Hrafska Str., 16600 Nizhyn, Ukraine
2V.Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Pr. Nauky, 03650 Kyiv, Ukraine
3National University "Kyiv-Mohyla Academy", 2 Skovorody Str., 04070 Kyiv, Ukraine

Abstract: 

Theoretical modeling of the excitation and propagation of surface phonon (plasmon-phonon) polaritons in MgxZn1-xO/6H-SiC structure was performed using a multi-oscillator model, which takes into account the additive contribution of the phonon and plasmon-phonon subsystem parameters to the dielectric permittivity of the material. The simulation was carried out for both MgxZn1-xO films and 6H-SiC substrates with different free carrier concentrations. It was determined the frequency windows where surface polaritons of different types can be excited. The dispersion dependences for MgxZn1-xO/6H-SiC structure were obtained taking into account the interaction of the phonon and plasmon-phonon subsystems of the film and the substrate. A three-dimensional representation of reflection coefficient of this structure was constructed.

Keywords: 
surface polaritons, attenuated total reflection, dielectric constant, magnesium-zinc oxide, silicon carbide, dispersion law.
References: 

1. E.F.Venger, A.V.Melnichuk, Yu.A.Pasechnik, Spectroscopy of Residual Rays, Naukova Dumka, Kiev (2001).
 
2. A.V.Melnichuk, Yu.A.Pasechnik, Fiz. Tv. Tela, 34, 423 (1992).
 
3. E.F.Venger, A.V Melnichuk, L.Yu.Melnichuk, Yu.A.Pasechnik, Phys. Stat. Sol. B, 188, 823 (1995).
https://doi.org/10.1002/pssb.2221880226
 
4. O.Melnichuk, L.Melnichuk, B.Tsykaniuk et al., Thin Solid Films, 673, 136 (2019).
https://doi.org/10.1016/j.tsf.2019.01.028
 
5. A.V.Melnichuk, J. Surf. Invest.. X-Ray, Synchrotron Neutron Techn., 7, 76 (1998).
 
6. E.F.Venger, L.Yu.Melnichuk, A.V.Melnichuk et al., Ukr. Fiz. Zh., 43, 598 (1998).
 
7. A.V.Melnichuk, Yu.A.Pasechnik, Phys. Solid State, 40, 582 (1998).
https://doi.org/10.1134/1.1130355
 
8. E.F.Venger, A.I.Ievtushenko, L.Yu.Melnichuk, O.V.Melnichuk, Phys. Chem. Solid States, 12, 579 (2011).
 
9. N.Korsunska, L.Borkovska, Yu.Polischuk et al., Mater. Sci. Semicond. Process., 94, 51 (2019).
https://doi.org/10.1016/j.mssp.2019.01.041
 
10. E.F.Venger, A.I.Ievtushenko, L.Yu.Melnichuk, O.V.Melnichuk, Semicond. Phys., Quantum Electron. Optoelectron., 13, 314 (2010).
https://doi.org/10.15407/spqeo13.03.314
 
11. I.Markevich, L.Borkovska, Y.Venger et al., Ukr. Fiz. Zh. Oglyady, 13, 57 (2018) [in Ukrainian]. https://ujp.bitp.kiev.ua/index.php/ ujp/article/view/2018235
 
12. O.V.Melnichuk, L.Yu.Melnichuk, N.O.Korsunska et al., Ukr. Fiz. Zh., 64, 434 (2019) [in English].
https://doi.org/10.15407/ujpe64.5.434
 
13. N.L.Dmitruk, V.G.Litovchenko, V.L.Strizhevsky, Surface Polaritons in Semiconductors and Dielectrics, Naukova Dumka, Kyiv (1989).
 
14. E.A.Vinogradov, N.N.Novikova, V.A.Yakovlev, Phys.Uspekhi, 184, 653 (2014).
https://doi.org/10.3367/UFNr.0184.201406g.0653
 
15. E.F.Venger, I.V.Venger, N.O.Korsunska et al., Semicond. Phys., Quantum Electron. Optoelectron., 21, 417 (2018).
https://doi.org/10.15407/spqeo21.04.417
 
16. Ye.F.Venger, I.V.Venger, D.V.Korbutyak et al., Mater. Intern. Conf. "Functional Materials for Innovative Energy", FMIE-2019", Kyiv (2019), а.4 (Y24).
 
17. D.Thapa, J.Huso, J.Lapp et al., J. Mater. Sci.:Mater. Electron., 29, 16782 (2018).
https://doi.org/10.1007/s10854-018-9772-y
 
18. L.Borkovska, L.Khomenkova, I.Markevich et al., Phys. Stat. Sol. A, 215, 1800250 (2018).
https://doi.org/10.1002/pssa.201800250
 
19. A.Ohtomo, M.Kawasaki, T.Koida et al., Appl. Phys. Lett., 71, 2466 (1998).
https://doi.org/10.1063/1.121384
 
20. A.Ohtomo, K.Tamura, M.Kawasaki et al., Appl. Phys. Lett., 77, 2204 (2000).
https://doi.org/10.1063/1.1315340
 
21. Y.Jin, B.Zhang, Y.Shuming et al., Solid State Commun., 119, 409 (2001).
https://doi.org/10.1016/S0038-1098(01)00244-7
 
22. A.Kaushal, D.Kaur, Solar Energy Mater. Solar Cells, 93, 193 (2009).
https://doi.org/10.1016/j.solmat.2008.09.039
 
23. J.Chen, W.Z.Shen, Appl. Phys. Lett., 83, 2154 (2003).
https://doi.org/10.1063/1.1610795
 
24. C.Bundesmann, A.Rahm, M.Lorenz, M.Grundmann, J. Appl. Phys., 99, 113504 (2006).
https://doi.org/10.1063/1.2200447
 
25. T.Makino, Y.Segawa, A.Ohtomo et al., Appl. Phys. Lett., 78, 1237 (2001).
https://doi.org/10.1063/1.1350632
 
26. Th.Gruber, C.Kirchner, R.Kling et al., Appl. Phys. Lett., 84, 5359 (2004).
https://doi.org/10.1063/1.1767273
 
27. U.Rau, D.Abou-Ras, T.Kirchartz, WILEY-VCH Verlag GmbH & Co. KGaA, 139 (2011).
 
28. N.A.Kovtun, B.T.Boyko, G.S.Khripunov, V.R.Kopach, Probl. Atom. Sci. Techn., 10, 75 (1999).
 
29. N.V.Romanova, General and Inorganic Chemistry, VTF "Perun" (1998).
 
30. P.I.Baransky, V.P.Klochkov, I.V.Potikevich. Semiconductor Electronics. Properties of Materials: Reference Book, Naukova Dumka, Kyiv (1975),
 
31. P.A.Ivanov, V.E.Shuttles, Semicond. Phys. Techn. J., 29, 1921 (1995).
 
32. I.N.Frantsevich, G.G.Gnesin, S.M.Zubkova et al., Silicon Carbide, Properties and Applications, Naukova Dumka, Kyiv (1975).
 
33. O.A.Ageev, A.E.Belyaev, N.S.Boltovets et al., Silicon Carbide: Technology, Properties, Application, ISMA, Kharkov (2010).
 
34. G.I.Dovbeshko, A.V.Melnichuk, S.V.Ogurtsov et al., Ukr. Fiz. Zh., 42, 728 (1997).
 
35. G.I.Dovbesko, S.V.Ogurtsov, G.A.Pushkovskaya et al., Mol. Struct., 114, 305 (1984).
https://doi.org/10.1016/0022-2860(84)87150-1
 
36. E.F.Venger, L.Yu.Melnichuk, A.V.Melnichuk, T.V.Semikina, Ukr. Fiz. Zh., 61, 1059 (2016).
https://doi.org/10.15407/ujpe61.12.1053
 
37. E.F.Venger, A.I.Yevtushenko, D.V.Korbutyak et al., Phys. Mathem. Notes: Collection Sci. Works, 53 (2010).
 
38. E.F.Venger, S.M.Davidenko, L.Yu.Melnichuk et al., Optoelectr. Semicond. Engin., 35, 190 (2000).
 
39. A.V.Melnichuk, Ukr. Fiz. Zh., 43, 1310 (1998).
https://doi.org/10.1109/TAC.1998.718624
 

Current number: