Funct. Mater. 2020; 27 (3): 575-580.

doi:https://doi.org/10.15407/fm27.03.575

Purification of Cd1-xZnxTe crystals from Te inclusions by hot zone method

S.Solodin, S.Dremlyuzhenko, M.Kolisnik, A.Kanak, A.Rarenko, Z.Zakharuk, P.Fochuk

Yu. Fedkovych Chernivtsi National University, 2 Kotziubynskoho Str., 58012 Chernivtsi, Ukraine

Abstract: 

In order to eliminate the Te inclusions in Cd0.9Zn0.1Te crystals grown with the tellurium excess, a hot zone method was used, similar to the traveling heater method, but without additionally weighted tellurium. After such heat treatment, a significant decrease of the density of secondary-phase inclusions was observed. Based on the studies of the Hall constant temperature dependence, a decrease in the concentration of shallow A1A = 0.03 eV) and deeper A2 acceptors (εA = 0.15 eV) was found; as well, a decrease in the magnitude of the absorption coefficient in the visible and infrared regions of the spectrum was noticed. The concentration of ionized centers was reduced by almost an order of magnitude; this indicates a significant increase of the material purity.

Keywords: 
Crystals, purification technology, tellurium inclusions, impurity concentration, acceptors.
References: 

1. R.Triboulet, P.Siffert, European Materials Research Society series, Elsevier, Oxford (2010).
 
2. U.N.Roy, A.Burger, R.B.James, J. Cryst. Growth, 379, 57 (2013).
https://doi.org/10.1016/j.jcrysgro.2012.11.047
 
3. Ya-dong Xu, Wan-qi Jie, Yi-hui He et al., Pro. Nat. Sci-Mater., 21, 66 (2011).
https://doi.org/10.1016/S1002-0071(12)60027-6
 
4. Xiao-yan Liang, Jia-hua Min, Liu-qing Yang et al., Mater. Sci. Semicond. Process., 40, 939 (2015).
https://doi.org/10.1016/j.mssp.2015.07.012
 
5. M.Shkir, V.Ganesh, S.AlFaify et al., Cryst. Growth & Design., 18, 2046 (2018).
https://doi.org/10.1021/acs.cgd.7b01483
 
6. J.H.Greenberg, V.N.Guskov, J. Cryst. Growth, 289, 552 (2006).
https://doi.org/10.1016/j.jcrysgro.2005.10.148
 
7. Y.Gu, C.Rong, Y.Xu et al., Nucl. Instr. Meth. Phys. Res. B, 343, 89 (2015).
https://doi.org/10.1016/j.nimb.2014.11.050
 
8. R.Guo, W.Jie, Y.Xu et al., Nucl. Instr. Meth. Phys. Res. A, 794, 62 (2015).
https://doi.org/10.1016/j.nima.2015.05.020
 
9. Y.Gua, W.Jie, L.Li et al., Micron, 88, 48 (2016).
https://doi.org/10.1016/j.micron.2016.06.001
 
10. K.H.Kim, J.Suh, A.E.Bolotnikov et al., J. Cryst. Growth, 354, 62 (2012).
https://doi.org/10.1016/j.jcrysgro.2012.03.058
 
11. G.Yang, A.E.Bolotnikov, P.M.Fochuk et al., J. Cryst. Growth, 379, 16 (2013).
https://doi.org/10.1016/j.jcrysgro.2012.11.041
 
12. P.Fochuk, R.Grill, O.Kopach et al., IEEE Trans. Nucl. Sci., 59, 256 (2012).
https://doi.org/10.1109/TNS.2012.2187069
 
13. C.Xu, F.Sheng, J.Yang., J. Cryst. Growth, 451, 126 (2016).
https://doi.org/10.1016/j.jcrysgro.2016.07.024
 
14. E.Kim, Y.Kim, A.E.Bolotnikov et al., Nucl. Instr. Meth. Phys. Res. A, 923, 51 (2019).
https://doi.org/10.1016/j.nima.2019.01.064
 
15. G.Piacentini, N.Zambelli, G.Benassi et al., J. Cryst. Growth, 415, 15 (2015).
https://doi.org/10.1016/j.jcrysgro.2014.12.018
 
16. P.Fochuk, Z.Zakharuk, Ye.Nykonyuk et al., IEEE Trans. Nucl. Sci., 63, 1839 (2016).
https://doi.org/10.1109/TNS.2016.2548425
 
17. Z.Zakharuk, S.Dremlyuzhenko, S.Solodin et al., J. Nano-Electron. Phys., 9, 06004-1 (2017).
 
18. K.Zanio, Semiconductors and Semimetals, Academic Press, New York, (1978).
 
19. L.A.Kosyachenko, Z.I.Zakharuk, A.V.Markov et al., Ukr. J. Phys., 49, 573 (2004).
 
20. Y.S.Nykoniuk, Z.I.Zakharuk, E.V.Rybak et al., Semicond., 40, 781 (2006).
https://doi.org/10.1134/S1063782606070086
 
21. P.Ravindran, Carrier Effective Mass Calculations, Computational Condensed Matter Physics, Springer (2015).
 
22. P.Fochuk, Ye.Nykoniuk, Z.Zakharuk et al., IEEE Trans. Nucl. Sci., 64, 2725 (2017).
https://doi.org/10.1109/TNS.2017.2748700
 

Current number: