Funct. Mater. 2020; 27 (3): 595-604.

doi:https://doi.org/10.15407/fm27.03.595

Influence of the bias potential applied in the process of deposition in constant and pulsed form on the structure, substructure, stress-strain state and hardness of TiN vacuum-arc coatings

N.V.Pinchuk, O.V.Sobol', V.V.Subbotina, G.I.Zelenskaya

National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The possibilities of structural engineering using three technological schemes for the formation of TiN vacuum-arc coatings are considered. When using the first scheme (without a high-voltage pulse potential) with a close to zero ("floating") constant bias potential, a polycrystalline structure is formed in the coatings without a preferred crystallite growth orientation. The average crystallite size (L) is about 31 nm, and microdeformation (ε) varies from 0.28 % to 0.12 % with an increase in nitrogen pressure in the vacuum chamber from 0.26 Pa to 0.66 Pa. The supply of a constant potential (Uc = -200 V) leads to the formation of a texture with the [111] axis, an increase in L to 91 nm and ε = 0.7 %. The second coating scheme for "floating" Uc with the simultaneous supply of a pulsed high voltage potential (Ui) at the structural level leads to the formation of a preferred orientation with the [100] and [110] axes. With this coating formation scheme, with an increase in the pulse potential, a decrease in L and ε is observed. The use of the third deposition scheme (combined action of Uc = -200 V and Ui) at Ui with a pulse duration of τ = 4 μs leads to a change in the texture axis from [111] (at Ui = -850 V) to a texture with the [110] axis (at Ui = -2000 V). At τ = 16 μs, the preferred orientation with the [110] axis becomes almost the only one. Based on a generalization of the results, it was found that the main negative contribution to the texture formation with the [111] and [100] axes is made by the constant negative potential Uc of 0...200 V. Using the high-voltage potential Ui = -(850...2000) V in a pulsed form stimulates texture formation [110] and a change in the macro- and microdeformed state. The highest hardness (40-45 GPa) is achieved for the regimes with the smallest Ui = -850 V, when the texture with the [110] axis is not the main one, and the macrodeformation of compression is 1.7-2.4 %. A 2-level model for describing the process under the action of methods of supplying bias potentials of different magnitude is proposed.

Keywords: 
structural engineering, titanium nitride, X-ray diffractometry, substructure, macrostrain, microhardness.
References: 

1. Handbook of Plasma Immersion Ion Implantation and Deposition, ed. by A.Anders, Wiley, New York (2000).

2. A.Anders, Vacuum, 67, 673 (2002).
https://doi.org/10.1016/S0042-207X(02)00260-9
 
3. M.M.M.Bilek, R.N.Tarrant, D.R.McKenzie et al., IEEE Trans. Plasma Sci., 31, 939 (2003).
https://doi.org/10.1109/TPS.2003.818409
 
4. N.Popovic, Z.Bogdanov, B.Goncic et al., Thin Solid Films, 459, 286 (2004).
https://doi.org/10.1016/j.tsf.2003.12.130
 
5. O.V.Sobol', A.A.Meilekhov, Techn.l Phys. Lett., 44, 63 (2018).
https://doi.org/10.1134/S1063785018010224
 
6. O.V.Sobol', O.Dur, A.A.Postelnyk, Z.V.Kraievska, Functional Materials, 26, 310 (2019).
 
7. O.V.Sobol', A.A.Andreev, V.F.Gorban et al., J. Nano- .Electron. Phys., 8, 01042 (2016).
 
8. O.V.Sobol', A.A.Andreev, V.F.Gorban, Metal Sci. Heat Treatm., 58, 37 (2016).
https://doi.org/10.1007/s11041-016-9961-3
 
9. O.V.Sobol', A.A.Postelnyk, A.A.Meylekhov et al., J. Nano- Electron.Phys. 9, 03003 (2017).
https://doi.org/10.21272/jnep.9(3).03003
 
10. O.V.Sobol', A.A.Andreev, V.A.Stolbovoj et al., Voprosy Atomnoj Nauki i Tekhniki, Worldcat, 4-98/74, 174 (2011).
 
11. O.V.Sobol', O.A.Shovkoplyas, Techn. Phys. Lett., 39, 536 (2013).
https://doi.org/10.1134/S1063785013060126
 
12. I.C.Noyanand. J.B.Cohen, Residual Stress Measurement by Diffraction and Interpretation, Springer-Verlag, New York (1987).
 
13. C.Genzel, Phys. Stat. Solidi (a), 159, 283 (1997).
https://doi.org/10.1002/1521-396X(199702)159:2<283::AID-PSSA283>3.0.CO;2-O
 
14. C.Genzel, W.Reinmers, Phys. Stat. Solidi: A-Appl. Res., 166, 751 (1998).
https://doi.org/10.1002/(SICI)1521-396X(199804)166:2<751::AID-PSSA751>3.0.CO;2-L
 
15. E.Aznakayev, Micron-Gamma for Estimation the Physico-mechanical Properties of Micro-materials, in: Proc. Intern. Conf. "Small Talk-2003", San Diego, California, USA, 001 (2003), p.8.
 
16. V.F.Gorban', Powder Metall. Metal Cer., 47, 493 (2008).
https://doi.org/10.1007/s11106-008-9048-9
 
17. O.V.Sobol', A.A.Andreev, V.F.Gorban' et al., Techn. Phys., 61, 1060 (2016).
https://doi.org/10.1134/S1063784216070252
 
18. O.V.Sobol', O.Dur, Functional Materials, 27, 100 (2020).
 
19. O.V.Sobol, A.A.Andreev, V.A.Stolbovoy, V.E.Filchikov, Techn. Phys. Lett., 38, 168 (2012).
https://doi.org/10.1134/S1063785012020307
 
20. P.Gargaud, S.Labat, O.Thomas, Thin Solid Films, 319, 9 (1998).
https://doi.org/10.1016/S0040-6090(97)01100-0
 
21. O.Piot, C.Gautier, J.Machet, Surf. Coat. Tech., 94-95, 409 (1997).
https://doi.org/10.1016/S0257-8972(97)00271-5
 
22. O.V.Sobol', O.N.Grigoriev, O.Dub et al., Sverkhtverdye Materialy, 5, 38 (2005).
 
23. D.R.McKenzie, Y.Tin, W.D.McFall, N.H.Hoang, J. Phys. Condens. Matter., 8, 5883 (1996).
https://doi.org/10.1088/0953-8984/8/32/008
 
24. S.Heinrich, S.Schirmer, D.Hirsch et al., Surf. Coat. Tech., 202, 2310 (2008).
https://doi.org/10.1016/j.surfcoat.2007.08.057
 
25. S.H.N.Lim, D.G.McCulloch, M.M.M.Bilek, D.R.McKenzie, Surf. Coat. Tech., 174-175, 76 (2003).
https://doi.org/10.1016/S0257-8972(03)00394-3

Current number: