Funct. Mater. 2020; 27 (3): 638-642.

doi:https://doi.org/10.15407/fm27.03.638

Stressed state of laminated interference-absorption filter under local loading

L.Ya.Ropyak1, M.V.Makoviichuk2, I.P.Shatskyi2, I.M.Pritula3, L.O.Gryn3, V.O.Belyakovskyi4

1Ivano-Frankivsk National Technical University of Oil and Gas, 15 Karpatska Str., 76019 Ivano-Frankivsk, Ukraine
2Ivano-Frankivsk Branch of Pidstryhach-Institute for Applied Problems in Mechanics and Mathematics, National Academy of Sciences of Ukraine, 3 Mykytynetska Str., 76002 Ivano-Frankivsk, Ukraine
3Institute for Single Crystals, STC "Institute for Single Crystals", 60 Nauky Ave., 61072 Kharkiv, Ukraine
4Private company "Modern Optical Technology", 16 Obolonskyi Ave., 04205 Kyiv, Ukraine

Abstract: 

The article describes a design of an interference-absorption short-wave cut-off filter which provides the minimum light transmission in the visible region of the spectrum from 0.65 to 0.78 μm and the maximum light transmission in the range 2.0 μm to 5.0 μm. An engineering technique for calculation of stressed state and strength of a layered light filter element under local loading has been developed. Acceptable loadings for a layered Si-SiO composition on sapphire substrate has been estimated.

Keywords: 
interference-absorption filter, layered coating, local loading, stresses, strength.
References: 

1. Patent of Ukraine 127567 (2018).
 
2. A.Thelen, Design of Optical Interference Coatings, McGraw-Hill, New York (1989).
 
3. L.M.Suslikov, Uzhhorod Univers. Sci. Herald. Ser. Phys., 26, 123 (2009).
 
4. S.V.Naydenov, S.V.Nizhankovskiy, A.V.Tan'ko et al., Functional Materials, 22, 380 (2015).
https://doi.org/10.15407/fm22.03.380
 
5. L.A.Grin, A.T.Budnikov, N.S.Sidelnikova et al., Functional Materials, 20, 111 (2013).
https://doi.org/10.15407/fm20.01.111
 
6. S.V.Nizhankovskiy, E.V.Krivonosov, V.V.Baranov et al., Inorgan. Mater.s, 48, 1111 (2012).
https://doi.org/10.1134/S0020168512110088
 
7. I.P.Shats'kyi, M.V.Makoviichuk, Mater. Sci., 39, 371 (2003).
https://doi.org/10.1023/B:MASC.0000010742.15838.44
 
8. I.P.Shatskii, J. Appl. Mech. Techn. Phys., 30, 828 (1989).
https://doi.org/10.1007/BF00851435
 
9. I.P.Shatskyi, V.V.Perepichka, L.Ya.Ropyak, Metallofizika i Noveishie Tekhnologii, 42, 69 (2020).
https://doi.org/10.15407/mfint.42.01.0069
 
10. V.A.Shevchuk, Streng. Mater., 32, 92 (2000).
https://doi.org/10.1007/BF02511512
 
11. Z.A.Duriagina, T.M.Kovbasyuk, S.A.Bespalov, Uspehi Fiziki Metallov, 17, 29 (2016).
https://doi.org/10.15407/ufm.17.01.029
 
12. R.M.Tatsiy, O.Yu.Pazen, S.Ya.Vovk et al., J. Serbian Soc. Comput. Mech., 13, 36 (2019).
https://doi.org/10.24874/jsscm.2019.13.02.04
 
13. V.V.Shyrokov, O.V.Maksymuk, Mater. Sci., 38, 62 (2002).
https://doi.org/10.1023/A:1020172731541
 
14. N.A.Dolgov, E.B.Soroka, Streng. Mater., 36, 636 (2004).
https://doi.org/10.1007/s11223-005-0010-5
 
15. R.Kul'chyts'kyi-Zhyhailo, A.Bajkowski, Mater. Sci., 49, 650 (2014).
https://doi.org/10.1007/s11003-014-9659-x
 
16. I.P.Shatskyi, L.Y.Ropyak, M.V.Makoviichuk, Streng. Mater., 48, 726 (2016).
https://doi.org/10.1007/s11223-016-9817-5
 
17. L.Ya.Ropyak, I.P.Shatskyi, M.V.Makoviichuk, Metallofizika i Noveishie Tekhnologii, 39, 517 (2017).
https://doi.org/10.15407/mfint.39.04.0517
 
18. L.Ya.Ropyak, I.P.Shatskyi, M.V.Makoviichuk, Metallofizika i Noveishie Tekhnologii, 41, 647 (2019).
https://doi.org/10.15407/mfint.41.05.0647
 
19. Y.N.Rabotnov, Mechanics of Deformable Solids. 2 ed., Nauka, Moscow (1988) [in Russian].

Current number: