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The paper deals with the problem on the connection of mechanical and optical proper-
ties of silicon and germanium nanoparticles. Experimental evidence of insignificant influ-
ence of nanoparticle sizes on oscillatory motions of lattice ions of medium is considered.
In particular, the experimental results obtained by thermoluminescent methods and the
excitation of acoustic vibrations by light in nanoparticles and macroenvironment are
examined. It is shown that the theory of elasticity can be applied to describe the vibrations
of nanoparticles. Using the equations of elasticity theory, the values of radial eigen
frequencies of vibrations for the spherical silicon and germanium nanoparticles are calcu-
lated. The optical properties of such nanoparticles and the possibility of their modulation
by elastic oscillations are considered. The applications of obtained results to the design of
sensor systems (for the detecting of medium oscillations in the kilohertz frequency range)
as well as for the use in information technologies are examined.

Keywords: silicon and germanium nanoparticles, elastic oscillations, optical absorption
and light emission, sensors.

IIpy:xHi KOJMBAHHS HAHOYACTHHOK KPEMHil0 Ta repMaHilo Ta IXHIiil BIJIMB HA ONTHYHI
Baactusocri. B.M. JAwyxk, I.B.JIe6edecea, O.B.Bopuceiiko

PosruanyTo npobiemy 3B’sA3KYy MEXaHIYHMX Ta ONTUYHKX BJACTHBOCTEH KpPeMHIieBMX Ta
repMaHi€eBUX HAHOYACTUHOK. PO3IIAHYTO EKCIIEPMMEHTAJbHI JOKa3M HEeiCTOTHOro BILIUBY
pPo3MipiB HAHOYACTHMHOK HA KOJHUBAJbHI pyxXxu i0HIB rparku cepemoBuia. 30KpeMma, IIPO-
AHAIIB0BAHO €KCIePUMEHTAJbHI Pe3yJbTaTh, [0 OTPUMAaHI TePMOJIOMIHECIIEHTHUMU MEeTOIa-
MU Ta Ipu 36yIKeHHI CBITIOM aKyCTHUHMX KOJMBAHb Y HAHOYACTHHKAX Ta MaKpOCepPeIOBU-
mrax. [lokasamo, o miad ONUCY KOJMBAHD HAHOUACTHHOK MOXKe OyTH BHKOPHCTAaHA Teopisa
HPYsKHOCTi. 3acTOCOBYHOUM PiBHAHHSA Teopil HPYsKHOCTiI, PO3PaxOBaHO SHAYEHHS BJACHUX
YacToOT paliaibHUX KOJMBAHDL MJA CPEePUUYHNX HAHOUYACTUHOK KpeMHilo Ta repmaniio. Pos-
IJISHYTO ONTUYHI BJAaCTHMBOCTI TAKHX HAHOYACTHHOK TA MOXMKJIMUBICTE 1X MOAYJIAIil HPYKHU-
MU KOJUBAHHSAMM. SaIlPOINOHOBAHO 3aCTOCYBAHHA OTPUMAHUX Pe3yJbTATIB IJA CTBOPEHHS
CEHCOPHUX cucTeM (I JAeTeKIil KoJIMBaHbL CepeqoBUINA Yy Kijgorepmosomy giamasoHi dacrTor)
B intopmanifinux TexHoJIOTifgX.

Paccvmorpena mnpobiiemMa CBA3M MEXaHHUYECKUX UM OITHUYECKHX CBOWCTE KPEMHUEBBIX U
repMaHHEBBIX HAHOYACTUIL. PaccMOTpPeHBl 9KCIEePHMEHTAJIbHBIE NOKA3aTeJIbCTBA HECYIIECT-
BEHHOI0 BJHAHHS PasMePOB HAHOYACTHI[ HA KoJebaTeJbHbIe IBUMKEHUS WHOHOB pPEIIeTHKH
cpeanl. B uacTHOCTH, IPOAHAJIM3MPOBAHBI SKCIIEPMMEHTAJIbHBIE PE3yJabTaThl, HOJyYEeHHBIE
TEPMOJIOMHUHECIIEHTHBIMY METOJaMM, & TAKiKe IPHU BO3OYKIEHHM CBETOM AKYCTUUYECKUX KO-
nebaHUI B HaHOUACTHIIAX M MaKpocpegax. IloxaszaHo, 4TO AJsd OIMMCAHUS KoJebaHUU HAHO-
YACTUI[ MOKeT ObITh MCIIOJb30BaHA Teopus yupyroctu. [I[puMeHAs ypaBHEHUA TEOPHUU YIIPY-
rOCTH, PACCUYMTAHO 3HAUEHUsS COOCTBEHHBIX UACTOT PALHAJBHBIX KoJaebaHuilt mias chepudec-
KMX HAHOYACTHUI[ KPEMHUS H TIepMaHUS. PacCcMOTpPeHBl OITHYECKUE CBOWCTBA TAKUX
HAHOYACTUL, ¥ BO3SMOMHOCTh UX MOLYJANHU YyUPYTUMU Koaebanuamu. IIperioxeHo mpume-
HEHHUe IIOJYYEHHBIX Pe3yJbTATOB [JA CO3JAHUS CEHCOPHBIX cucTeM (IeTeRIuu KojgebaHwuil
cpelbl B KMJIOTEPIOBOM JHAIIA30HE YACTOT) B MHGOPMAIMOHHBIX TE€XHOJOIMAX.
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1. Introduction

Metal and semiconductor particles hav-
ing characteristic dimensions of the order
of tens of nm exhibit special electron-opti-
cal properties different from those for con-
tinuous media (bulk materials).

Particles of this size are called nanopar-
ticles or quantum dots. It is known [1] that
the limitation in particle sizes of 2-100 nm
is significant for electrons and holes and
effects on spectral properties of nanoparti-
cles. At the same time, the local vibrations
of molecules or atoms at the lattice nodes
do not "feel” the significant effect of such
a spatial confinement (including particles of
the order of several nm in size). The move-
ments of ions of the spatial lattice of semi-
conductor materials and metals are much
less dependent on the size of the nanoparti-
cles than the motion of electrons.

Therefore, such mechanical properties as
elasticity have to be preserved for bodies of
very small size, since even for two neutral
molecules interacting due to dispersion
forces (the Lennard-Jones potential), in the
case of small deviations from their equilib-
rium position, the Hooke law is fulfilled.
One of the experimental evidence of the
small effect of nanoparticle sizes on the vi-
brational motions of the lattice ions is the
proximity of the trap energies for the
charge carriers obtained by thermolumines-
cent methods for semiconductors and their
nanoparticles [2]. The thermal ejection of
curriers from traps in crystals, is connected
namely with the vibrations of the lattice
ions of materials as was shown by A.Gu-
meniuk and co-authors [3]. Another proof is
the closeness of the mechanical constants of
the nanoparticles and the macroscopic sam-
ples obtained by the excitation of acoustic
vibrations by light in the nanoparticles [4,
5]. The comparatively small differences (up
to 18 %) in the values of these constants
are explained by the effect of the difference
in the processes of dislocation formation in
nanoparticles and macromaterials [4].

The above gives the reason to apply the
theory of elasticity to the study of mechani-
cal vibrations of nanoparticles of this type
in the specified size range. On the other
hand, the dependence of optical charac-
teristics on the size of the nanoparticles
makes it possible to modulate them, excit-
ing mechanical vibrations of the nanoparti-
cles. In this paper, the elastic mechanical
vibrations of semiconductor spherical (ball)
nanoparticles of silicon and germanium are
studied. In particular, it is shown that the
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natural radial oscillation frequencies of this
type of nanoparticles are in the kilohertz
range. The effects of modulation of the op-
tical properties of the nanoparticles by me-
chanical vibrations are considered.

2. Analytical analysis of elastic
vibrations of silicon and
germanium nanoparticles

The spatial bodies of canonical form
(both isotropic and different anisotropic),
such as a sphere, a cube, an ellipsoid, are
known to be most often chosen to model the
behavior of nanoparticles [1, 5, 9]. For an-
isotropic elastic bodies, the three-dimen-
sional problem on analytical and even ana-
lytical-numerical determination of the spec-
trum of ymnoyr frequencies oscillations is
rather complicated and requires a large
amount of calculations.

The statement of the problem is simpli-
fied, when one of the characteristic sizes is
much smaller than the other (plates, shells,
shell elements), or the geometric axis of
symmetry and the axis of anisotropy of the
transversely isotropic body are coincided.
Then the dimension of the problem de-
creases, the equations of the state are sim-
plified and it is possible to use the applied
theory of plates and shells (the Kirchhoff
flat cross section hypothesis, the theory of
Tymoshenko type shells), or to obtain an
accurate analytical solution [6].

The problems on oscillation of isotropic
spatial elastic bodies are much simpler. In the
cases of reducing of these problems to the
flat ones (homogeneous cylinder, rectangular
plate, etc.), a biharmonic boundary wvalue
problem is usually obtained [7]. The solution
to such a problem is also quite complicated.

For isotropic spherical bodies it is also
possible to simplify the general statement
of the problem on elastic vibrations. The
main forms of oscillation under considera-
tion are radial (spherical mode), circumfer-
ential (elliptical mode) and torsional oscilla-
tion (torsion mode). Such forms of oscilla-
tion are caused by different types of
external loading of an elastic macroscopic
body. In most cases, such loads cannot be
applied to the nanoparticle. However, these
cases are also quite interesting and notewor-
thy. G.Lamb’s fundamental work [8] deals
with the problem on oscillations of an in-
compressible elastic ball in a three-dimen-
sional formulation, and, as a partial case,
the problems on free elliptic and torsional
oscillations. Radial modes for incompress-
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ible material are impossible and are not con-
sidered in [8].

In the case of a load uniformly distrib-
uted over the surface by time-harmonic ex-
ternal pressure, the problem is axisymmet-
rical. In this case, the solution to the radial
oscillation problem can be obtained explic-
itly by solving of the two-dimensional
boundary-value problem of mathematical
physics by the method of eigenfunctions [9],
or by going directly to the equation in am-
plitudes [1]. In [9], the chosen system of
functions is not complete, so the results ob-
tained are contrary to the physical state-
ment of the problem, namely, the condition
of zero displacement of the center of the
sphere. In our work (see also [1]) the com-
plete analytical solution of the problem was
obtained. It allows to get a spectrum of di-
mensionless frequencies. Assuming the
similar elastic behavior of nanoparticles and
macroscopic bodies of the same shape, we
can determine the real resonant frequencies
by a simple recalculation.

Let us consider the problem on radial os-
cillations of a homogeneous isotropic elastic
sphere under the action of an external time-
harmonie pressure distributed uniformly over
the surface of the spherical body [1].

We are looking for an expression for the
variable radius of the nanosphere in the
form

R(t) = Ry + u,(Rg»?)-

The problem will be solved in a spherical
coordinate system. Since the movement of
the particles of the sphere is radial, the
displacement vector will have only one non-
zero component:

u = eu,(r,t).

Because of the central symmetry of the
problem, the complete system of equations
of elasticity theory will be simplified in a
spherical coordinate system.

The Cauchy ratios could be formulated as
follows:

B ou, u

E.=— e
r ar’ (0} 0 r

The expressions for the non-zero compo-
nents of the stress tensor through the radial
displacements of the particles can be given
in the form:

_ E Lo, g Y
c5r_(1—v)(1—2v)( _v)8r+ Vol
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Here E is the Young’s modulus, v is the
Poisson ratio of the sphere material.
We obtain the differential equation of
motion from the equations of equilibrium by

adding inertial terms:
-0 o2u
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The boundary conditions can be set as
follows:

— iwt
o _ R, = 0"

Here o, is the amplitude of the external
harmonic load.

Let us express the stresses through the
radial displacements in the equation of mo-
tion, and thus we get a simplified differen-
tial equation of motion in displacements
(the Lame equation)

20u, 9 P 02u

%u, _ ,
2 "o 2T row o2

where A, U are the Lame coefficients.

Taking into account the nature of the
load, we will search for an unknown radial
displacement function in the form of a har-
monic function of time:

u,(r,t) = u(r)ei®r.

Then, the ordinary homogeneous second
order differential equation is obtained to
determine the amplitude of displacements:

d%u du
20U 2 _ _
r a2 + 2% + ((kr) 2)u=0,
where
K= _po- _ O is the wave number, ®
A+2w ¢
is the angular frequency of vibrations,
1
C = =
\/X +2u E(1 -v)
p p(1 + v)(1 - 2v)

is the speed of propagation of radial spa-
tial waves.

The general solution to this equation is
as follows:

Here ji(xr), y;(xr) are the spherical Bes-
sel functions of the first and second kinds.
Since the displacement of the sphere center
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is equal to zero and limy(r) = —oo, we set Cy = 0.
r—=>0
Then
u(r) = Cqjy(xr). Finally, the expression
for the variable radius of the nanosphere
can be written in the form:

From the boundary conditions we find
the amplitude of the radial component of
the stress tensor

3 EC,

, 2.
0, = m((l = V)kjo(kr) + 1 (kr))

and the unknown constant of integration Cj:

C. = 1+va-2v) Sofy
1 E (1 = V(kRy)jo(KRy) + 21, (Ry)”

The condition of infinite increase of the
forced oscillations amplitude yields the
equation for the determination of dimen-
sionless resonant frequencies (f = kRy):

1 = V)(KRy)jo(KR,) + 2j1(KRy) = 0.

Further, the dimensional frequencies can
be obtained by the formula: f = k/R, where
k =Tc/2m.

For germanium nanoparticles (v = 0.278;
E =1.381011 Pa; p = 5323 kg/m3) with a
radius of Ry = 100 nm, the values of the
first resonant frequencies are 770 Hz;
1385 Hz, 2019 Hz; 3285 Hz.

For silicon nanoparticles (v = 0.266;E =
1.89-1010 Pa; p = 2829 kg/m3) with a radius
of Ry =100 nm, the values of the first reso-
nant frequencies are 1411 Hz; 2542 Hzg,
3704 Hz; 4882 Hz.

It should be noted that the attempt to
describe the mechanical oscillations of the
nanoparticles was made in [10] in the case
when oscillations were excited by heating
the nanoparticles using laser radiation. The
nanoparticle temperature reached the melt-
ing point. That is why the authors used the
Navier equation (as for liquids, not for a
rigid deformable body) to describe the re-
sulting oscillations. The authors showed
that the values of the frequencies of me-
chanical vibrations of the nanoparticles in
this state are in the gigahertz range. The
method of excitation of oscillations of a
particle due to its laser heating was also
applied in [11]. In this case, a resonant fre-
quency of radial oscillations was obtained of
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40 megahertz for a gold nanoparticle with
diameter of 136 nm.

3. Modulation of the optical
response of Si and
Ge-nanoparticles by acoustic
vibrations

The effects of the acoustic modulation of
the optical properties of metallic nanoparti-
cles have been considered in a number of
papers, see f.e. [1, 10, 11]. In particular
[1], it was demonstrated that the optical
properties (absorption spectra) of nanoparti-
cles of this type are influenced not only
by the electron motion limitation, but
also by the dependence of plasmon proc-
esses on the size nanoparticles. For semicon-
ductor nanoparticles (starting, from a cer-
tain size) the finite motion of electrons and
holes plays a major role in their optical
properties. Therefore, the spectra of absorp-
tion and fluorescence, as well as quantum
yield, are to great extent dependent on the
size of the nanoparticles.

The wavelength of the maximum absorp-
tion of semiconductor nanoparticle under
conditions of finite motion of the carriers
increases with the nanoparticle size. In gen-
eral, for semiconductor nanoparticles, the
finiteness of carrier motion leads to the fol-
lowing dependence of the energy of the
longwave electron transition (and hence of
the absorption spectrum) on the size of the
nanoparticle [12, 18] (the formula written
for a cubic nanocrystal)

hznzng( 1
2d? Lme +my |

AE=E,+Y
i=x,y,2

where d; is the size of the nanoparticles, m,
is the effective mass of the electron, my is
the effective mass of the hole, E, is the
energy of the band gap of the macromate-
rial. It should be noted that semiconductor
nanoparticles exhibit intense fluorescence as
opposed to metallic ones. It turns out, as
shown in [14], the quantum yield of the
fluorescence of a semiconductor nanoparti-
cle also depends significantly on its size R.
So

1

=17 BR>

where B is the constant that depends on the
nanoparticle features.

Thus, changing over time the size of the
nanoparticles should lead to changes in the
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absorption spectra, fluorescence spectra,
and quantum fluorescence yield. Therefore,
mechanical oscillations of the nanoparticles
can modulate their optical absorption, spec-
tra, and fluorescence intensity. The elastic
oscillation frequencies obtained for the sili-
con and germanium nanoparticles obtained
in this work are in the kilohertz frequency
range. At such frequencies, the above-men-
tioned optical characteristics can be modu-
lated. In our opinion, these results can be
used to design the sensor systems for re-
cording kilohertz oscillations that propagate
in the environment. To the other hand, the
possibility of modulation of light beam
characteristics can be used in information
technologies. Particularly sensitive sensor
systems can be created on the basis of
nanoparticles formed in porous silicon,
which exhibit intense fluorescence in the
visible range. The modulation of the opti-
cal characteristics of germanium nanoparti-
cles (in the ultraviolet range) can also be
used in sensing systems of the specified
type or information processing.

4. Conclusions

The arguments in favor of using the the-
ory of elasticity to describe oscillation proc-
esses in nanoparticles are examined.

Using the equations of elasticity theory,
the values of radial own oscillations for the
spherical silicon and germanium nanoparti-
cles were obtained.

The optical properties of silicon and ger-
manium nanoparticles and the possibility of
their modulation by elastic eigen oscilla-
tions are considered.
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The application of these modulation tech-
niques in sensor systems for the detecting
of medium oscillations in the kilohertz fre-
quency range as well as in information tech-
nologies is proposed.
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