Funct. Mater. 2020; 27 4: 659-666.

doi:https://doi.org/10.15407/fm27.04.659

Peculiarities of phase transitions in the Josephson medium of the granular high-temperature superconductors YBa2Cu3O7-δ under the influence of temperature, external magnetic field, and transport current

T.V.Sukhareva, V.A.Finkel, V.V.Derevyanko

National Scientific Center Kharkov Institute of Physics and Technology, National Academy of Sciences of Ukraine, str. Akademicheskaya 1, Kharkov 61108, Ukraine

Abstract: 

The work is devoted to establishing the identity of the topological phases arising in the Josephson medium of granular high-temperature superconductors YBa2Cu3O7-δ during the Berezinskii-Kosterlits-Thouless phase transitions (BKT transition) under the influence of an external magnetic field and transport current. It has been established that the nature of the topological phases arising as a result of the BKT phase transition does not depend on the type of external influence.

Keywords: 
High-temperature superconductors, phase transition, topological phases.
References: 
1. V. L. Berezinskii, Sov. Phys. JETP, 32, 493 (1970).
https://doi.org/10.1097/00000542-197006000-00002
 
2. V. L. Berezinskii, Sov. Phys. JETP, 34, 610 (1971).
 
3. J.M. Kosterlitz, D.J. Thouless, J. Phys. C5, L124 (1972).
https://doi.org/10.1088/0022-3719/5/11/002
 
4. J. M. Kosterlitz, D. J. Thouless, J. Phys. C6 1181 (1973).
https://doi.org/10.1088/0022-3719/6/7/010
 
5. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel', Phys. Solid State, 59, 1492 (2017)
https://doi.org/10.1134/S1063783417080091
 
6. B. Ji, M.S. Rzchowski, N. Anand, M. Tinkham, Phys. Rev. B 47, 470 (1993).
https://doi.org/10.1103/PhysRevB.47.470
 
7. C.A.M. dos Santos, C.J.V. Oliveira, M.S. da Luz, A.D. Bortolozo, M.J.R. Sandim, A.J.S. Machado. Phys. Rev. B. 74, 184526(2006).
https://doi.org/10.1103/PhysRevB.74.229902
 
8. J.N. Rjabinin, L.W. Shubnikow, Nature, 134, 260 (1934).
https://doi.org/10.1038/134286b0
 
9. G. Blatter, M. V. Feigel'man, V. B. Geshkenbein, A. I. Larkin, V. M. Vinokur . Rev. Mod. Phys., 66, 1125(1994).
https://doi.org/10.1103/RevModPhys.66.1125
 
10. D. Goldschmidt. Phys Rev. B. 39, 9139 (1989).
https://doi.org/10.1103/PhysRevB.39.9139
 
11. W. A. T. Passos, P. N. Lisboa-Filho, and W. A. Ortiz, J. Magn. Magn. Mater. 226-230, 293 (2001).
https://doi.org/10.1016/S0304-8853(00)01346-9
 
12. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel, Phys. Solid State, 60, 3, 470 (2018).
https://doi.org/10.1134/S1063783418030083
 
13. T. V. Sukhareva, V. A. Finkel, JETP Letters, 108, 4, 243 (2018).
https://doi.org/10.1134/S0021364018160099
 
14. T. V. Sukhareva, V. A. Finkel, Low Temp. Phys. 44, 194 (2018); doi: 10.1063/1.5024534.
https://doi.org/10.1063/1.5024534
 
15. T. V. Sukhareva, V. A. Finkel, JETP, 107, 5, 787 (2008).
https://doi.org/10.1134/S1063776108110083
 
16. V. A. Finkel, Low Temp. Phys. 28, 687 (2002).
https://doi.org/10.1063/1.1511714
 
17. T.V. Sukhareva, V.A. Finkel, Technical Physics 55, 1, 66(2010).
https://doi.org/10.1134/S1063784210010111
 
18. T.V. Sukhareva, J Supercond Nov Magn. 26, 5, 2021 (2013).
https://doi.org/10.1007/s10948-012-1993-3
 
19. V. V. Derevyanko, T. V. Sukhareva, V. A. Finkel, and Yu. N. Shakhov. Phys. Solid State 56(4), 649 (2014).
https://doi.org/10.1134/S1063783414040076
 
20. A.M. Bovda, V.V. Derevyanko, T.V. Sukhareva, V.A.Finkel. Functional Materials 21, 3, 360 (2014).
https://doi.org/10.15407/fm21.03.360
 
21. J. Jose, L.P. Kadanoff, S. Kirkpatric, D.R. Nelson. Phys.Rev.,B16,1217(1977).
https://doi.org/10.1103/PhysRevB.16.1217
 
22. Lei Qiao, Dingping Li, S. V. Postolova, A. Yu. Mironov, V. Vinokur, Baruch Rosenstein, Scien. Rep. 8, 14104 (2018).
https://doi.org/10.1038/s41598-018-32302-8
 
23. Weiwei Zhao, Qingyan Wang, Minhao Liu, Wenhao Zhang, et. al. Solid State Commun. 165, 59, (2013).
https://doi.org/10.1016/j.ssc.2013.04.025
 
24. M. P. Stehno, V. Orlyanchik, C. D. Nugroho, P. Ghaemi, et. al ., Phys. Rev. B. 93, 035307 (2016).
https://doi.org/10.1103/PhysRevB.93.035307
 
25. R. W. Crane, N. P. Armitage, A. Johansson, G. Sambandamurthy,et. al., Phys. Rev. B 75, 094506, (2007).
https://doi.org/10.1103/PhysRevB.75.094506
 
26. A. M. Kadin, K. Epstein, and A. M. Goldman. Phys. Rev. B 27, 6691 (1983).
https://doi.org/10.1103/PhysRevB.27.6691
 
27. Alexey Yu. Mironov, Daniel M. Silevitch, Thomas Proslier, et. al., Scientific Reports, 8, 4082 (2018).
https://doi.org/10.1038/s41598-018-22451-1
 
28. G. Venditti, J. Biscaras, S. Hurand, N. Bergeal, et.al., Phys. Rev. B 100, 064506 (2019).
https://doi.org/10.1103/PhysRevB.100.064506
 
29. S. S. Bungre, S. M. Cassidy, A. D. Caplin,et. al., Supercond. Sci. Technol. 4, S250 (1991).
https://doi.org/10.1088/0953-2048/4/1S/069
 
30. Zhi-Xiong Cai and David O. Welch., Phys. Rev. B45,2385(1992).
https://doi.org/10.1103/PhysRevB.45.2385
 
31. E. Meilikhov, Yu. Gershanov. Physica C. 157, 431(1989).
https://doi.org/10.1016/0921-4534(89)90267-0
 
32. M.T. Gonzalez, S.R. Curras, J. Maza, F. Vidal. Phys. Rev. B 63, 224511 (2001).
https://doi.org/10.1103/PhysRevB.63.224511
 

Current number: