Funct. Mater. 2020; 27 4: 667-674.

doi:https://doi.org/10.15407/fm27.04.667

Optical, electrophysical and structural properties of polycrystalline germanium grown by horizontal directional crystallization method

S.V.Nizhankovskyi, L.O.Gryn, A.A.Kozlovskyi, O.O.Vovk

Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Studied are the conditions for the obtaining of polycrystalline germanium (poly-Ge) of optical quality by the method of horizontal directional crystallization. Peculiarities of the formation of the structural and electrophysical characteristics, as well as their influence on the optical properties of the polycrystals, are investigated. It is established that poly-Ge ingots have inhomogeneous structure and texturing with preferential growth of crystallites along the crystallographic direction [111]. The grain sizes vary within a wide range from ~ a millimeter to several centimeters along and across the ingot. It is shown that, likewise in the case of Ge single crystals, the electrophysical and optical properties of poly-Ge are essentially defined by the concentration of free charge carriers, the structural defects and the charge state of the donor activator. Annealing at T = 850-900°C raises the value of optical transmission of both pure and Sb-doped germanium not less than by 1-2 % within the whole of the transparency range. There is obtained poly-Ge:Sb with the coefficient of light attenuation α ~ 0.04 cm-1 (for 10.6 μm wavelength) and high homogeneity of the distribution of the characteristics along the ingot.

Keywords: 
Stibium doped germanium, horizontal directional crystallization method, optical absorption, resistivity, carrier concentration.
References: 

1. S.Brantegem, H.Ottevaere, V.Gomez et al., in: Proc. SPIE, v.5990, 335 (2005).
2. G.Gafni, M.Azoulay, C.Shiloh et al., Opt. Engin., 28, 1003 (1989).
https://doi.org/10.1117/12.7977078
3. P.J.Bishop, A.F.Gibson, Appl. Opt., 12, 2549 (1973).
https://doi.org/10.1364/AO.12.002549
4. A.F.Shimanskii, A.N.Gorodishcheva, S.A.Kopytkova, J. Phys.: Conf. Ser., 1353, 012062 (2019).
https://doi.org/10.1088/1742-6596/1353/1/012062
5. E.D.Capron, O.L.Brill, Appl. Opt., 12, 569 (1973).
https://doi.org/10.1364/AO.12.000569
6. D.C.Curtolo, S.Friedrich, B.Friedrich, J. Crystall. Proc.d Techn., 7, 65 (2017).
https://doi.org/10.4236/jcpt.2017.74005
7. P.V.Kasimkin, A.F.Kurus, V.N.Shlegel et al., J. Cryst. Growth, 531, 125375 (2020).
https://doi.org/10.1016/j.jcrysgro.2019.125375
8. B.Depuydt, A.Theuwis, I.Romandic, Mater. Sci. Semicond. Proc., 9, 437 (2006).
https://doi.org/10.1016/j.mssp.2006.08.002
9. A.I.Fedyushkin, N.G.Burago, A.A.Puntus, J. Phys.:Conf. Ser., 1359, 012045 (2019).
https://doi.org/10.1088/1742-6596/1359/1/012045
10. D.I.Levinson, P.I.Antonov, J. Cryst. Growth, 50, 320 (1980).
https://doi.org/10.1016/0022-0248(80)90254-7
 11. E.N.Makolkina, A.K.Pizhevuskii, J. Opt. Technol., 70, 819 (2003).
https://doi.org/10.1364/JOT.70.000819
 12. L.Van Goethem, L.Ph.Van Maele, M.Van Sande, Proc. SPIE, Infrared and Optical Transmitting Materials, v.683, 160 (1986).
 13. M.Azoulay, G.Gafni, M.Roth, Proc. SPIE, Sixth Meeting on Optical Engineering, v.1038, in Israel 446 (1988).
 14. http://opticalsystems.com/files/7113/8558/1721/Ge Mono vs Poly paper-A.pdf
 15. G.S.Pekar, A.F.Singaevsky, M.M.Lokshin et al., Semicond. Phys., Quant. Electron. & Optoelectron., 21, 173 (2018).
https://doi.org/10.15407/spqeo21.02.173
 16. I.A.Kaplunov, Yu.M.Smirnov, A.I.Kolesnikov, Opticheskyi Zhurnal, 72, 61 (2005).
https://doi.org/10.1364/JOT.72.000214
 17. Yadunath Singh, Intern. J. Modern Phys.: Conf. Ser., 22, 745 (2013).
https://doi.org/10.1142/S2010194513010970
 18. L.I.Anatychuk, Thermoelements and Thermoelectric Devices, Naukova Dumka, Kyiv (1979).
 19. L.P.Pavlov, Methods of Measurement of Parameters of Semiconductor Materials, Vyshaya Shkola, Moscow (1987) [in Russian].
 20. SEMI MF43-0705 Test Methods for Resistivity of Semiconductors Materials, Semiconductor Equipment and Materials International 2003, 2005, www.semi.org.
 21. Handbook of Physical Quantities, ed. by I.S.Grigoriev, E.Z.Meilikhov, Energoatomizdat, Moscow (1991) [in Russian].
 22. P.S.Kireev, Semiconductor Physics, Vyshaya Shkola, Moscow (1969) [in Russian].
 23. M.B.Princ, Phys. Rev., 92, 681 (1953).
https://doi.org/10.1103/PhysRev.92.681
 24. Transistor Technology, ed. by H.E.Bridgers, J.H.Scaff, J.N.Shive, F.J.Biondi, D.van Nostrand Co., Princeton, NJ (1958).
 25. E.E.Haller, Mater. Sci. Semicond. Proc., 9, 408 (2006).
https://doi.org/10.1016/j.mssp.2006.08.063
 26. V.P.Kaplushkin, in: Proc. of the Institute of General Phys., Acad. Sci. USSR, v.4, 3 (1986).
 27. Yu.M.Tairov, V.F.Tsvetkov, Semiconductor and Dielectric Material Technology, Vyshaya Shkola, Moscow (1990) [in Russian].

Current number: