Funct. Mater. 2020; 27 4: 681-686.

doi:https://doi.org/10.15407/fm27.04.681

Solution growth and characterization of high-quality organic 4-N,N'-dimethylamino-N-methyl-4-stilbazolium tosylate crystals

G.N.Babenko1, A.P.Voronov1, E.F.Dolzhenkova1, V.S.Zadorozhny1, I.M.Pritula1, R.Galbadrakh2, L.Enkhtor2

1Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenin Ave., 61001 Kharkiv, Ukraine
2Department of Physics, School of Arts and Sciences, National University of Mongolia, 14201 Ikh Surguuliin gudamj1, Sukhbaatar district, Ulaanbaatar, Mongolia

Abstract: 

High-quality 4-N,N'-dimethylamino-N-methyl-4-stilbazolium tosylate crystals has been grown onto a seed from supersaturated methanol solution by controlled temperature lowering method. XRD studies confirm structural perfection of the grown crystals. The functional groups of DAST were identified by FTIR studies. The average values of microhardness obtained on the surface and on the cleaved facet of the grown crystals are different and amount 28.1 and 32.6 kgf/mm2, respectively. There is established a correlation between the values of microhardness and the character of distribution of dislocations in the DAST crystals.

Keywords: 
organic crystals, structural perfection, microhardness, dislocation density.
References: 
1. A.Barh, B.P.Pal, G.P.Agrawal et al., IEEE J. Sel. Top. Quantum Electron., 22, 365 (2016).
https://doi.org/10.1109/JSTQE.2015.2494537
 
2. M.Jazbinsek, U.Pet, A.Abina et al., Appl. Sci., 9, 882 (2019).
https://doi.org/10.3390/app9050882
 
3. K.Kumar, R.N.Ra, S.B.Rai, Appl. Phys. B, 96, 85 (2009).
https://doi.org/10.1007/s00340-009-3573-1
 
4. M.Jazbinsek, L.Mutter, P.Gunter, IEEE J. Sel. Top. Quantum Electron., 14, 1298 (2008).
https://doi.org/10.1109/JSTQE.2008.921407
 
5. I.Yu.Denisyuk, Yu.E.Burunkova, T.V.Smirnova, J. Opt. Technol., 74, 127 (2007).
https://doi.org/10.1364/JOT.74.000127
 
6. B.Ruiz, M.Jazbinsek, P.Gunter, Crystal Growth of DAST, Cryst. Growth Des., 8, 4173 (2008).
https://doi.org/10.1021/cg8003432
 
7. K.Nagaoka, H.Adachi, S.Brahadeeswaran et al., Jap. J. Appl. Phys., 43, L261 (2004).
https://doi.org/10.1143/JJAP.43.L261
 
8. I.M.Pritula, A.V.Kosinova, D.A.Vorontsov et al., J. Cryst. Growth., 335, 26 (2012).
https://doi.org/10.1016/j.jcrysgro.2012.06.033
 
9. I.M.Pritula, V.I.Salo, M.I.Kolybaeva, Inorg. Mater., 37, 184 (2001).
https://doi.org/10.1023/A:1004126114703
 
10. Y.Mineno, T.Matsukawa, S.Ikeda et al., Mol. Cryst. Liq. Cryst., 463, 55/[337] (2007).
https://doi.org/10.1080/15421400601021513
 
11. R.M.Kumar, D.R.Babu, G.Ravi et al., J. Cryst. Growth., 250, 113 (2003).
https://doi.org/10.1016/S0022-0248(02)02236-4
 
12. T.Bing, W.Shu-hua, F.Ke, Cryst. Res. Technol., 49, 943 (2014).
https://doi.org/10.1002/crat.201400147
 
13. M.Manivannan, S.A.Martin Britto Dhas, M.Jose, J. Cryst. Growth., 455, 161 (2016).
https://doi.org/10.1016/j.jcrysgro.2016.09.053
 
14. K.Kumar, R.N.Rai, S.B.Rai, Appl. Phys. B, 96, 85 (2009).
https://doi.org/10.1007/s00340-009-3573-1
 
15. R.J.Vijay, N.Melikechi, T.Thomas et al., Mater. Chem. and Phys., 132, 610 (2012).
https://doi.org/10.1016/j.matchemphys.2011.11.076
 
16. K.Jagannathan, S.Kalainathan, Mater. Res. Bull., 42, 1881 (2007)
https://doi.org/10.1016/j.materresbull.2007.07.017
 
17. H.Nanjo, K.Komatsu, T.Suzuki, Thin Solid Films, 464-465, 425 (2004).
https://doi.org/10.1016/j.tsf.2004.06.027
 
18. L.N.Asnis, Yu.E.Burunkova, A.V.Veniaminov et al., J. Opt. Technol., 78, 761 (2011).
https://doi.org/10.1364/JOT.78.000761
 
 
 

Current number: