Funct. Mater. 2020; 27 4: 695-702.

doi:https://doi.org/10.15407/fm27.04.695

Composite materials based on nanoporous SiO2-matrices and TiO2 nanoparticles

O.N.Bezkrovnaya1, I.M.Pritula1, O.M.Vovk1, Yu.A.Gurkalenko2, A.N.Shaposhnik3, D.S.Sofronov3, Y.V.Taranets1

1Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Institute for Scintillation Materials, SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
3Division of Functional Materials Chemistry, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

SiO2:TiO2 composites were obtained by saturation of SiO2-matrices (with a porosity of ~ 30 % and ~ 42 %) with a suspension of TiO2 nanoparticles and subsequent annealing to 700°C. It was shown that, due to annealing of the composites in the temperature range of 400-700°C, there was observed agglomeration of TiO2 nanoparticles in the pores of the SiO2-matrices, that manifested itself in an increase of the absorption in wavelength range of 390-800 nm. The presence of diffraction rings in the electron microdiffraction images confirms formation of TiO2 crystallites in SiO2:TiO2 composites. The content of titanium in the composite less than 1 % relative to silicon did not allow to reveal crystalline TiO2 phase in the composites by powder X-ray diffraction method. TiO2 is probably present in the composites based on SiO2-matrices with high porosity both in the form of crystallites and in amorphous state.

Keywords: 
SiO<sub>2</sub>-matrices, TiO<sub>2</sub> nanoparticles, composites, absorption.
References: 
1. C.Sanchez, L.Rozes, F.Ribot et al., Comptes Rendus Chimie, 13, 3 (2010).
https://doi.org/10.1016/j.crci.2009.06.001
 
2. M.D.Rahn, T.A.King, Appl. Opt., 34, 8260 (1995).
https://doi.org/10.1364/AO.34.008260
 
3. R.Gvishi, U.Narang, G.Ruland et al., Appl. Organ. Chem., 11, 107 (1997).
https://doi.org/10.1002/(SICI)1099-0739(199702)11:2<107::AID-AOC565>3.0.CO;2-J
 
4. L.Z.Yao, C.H.Ye, C.M.Mo et al., J. Cryst. Growth, 216, 147 (2000).
https://doi.org/10.1016/S0022-0248(00)00454-1
 
5. I.M.Pritula, V.Ya.Gayvoronsky, M.I.Kolybaeva et al., Opt. Mater., 33, 623 (2011).
https://doi.org/10.1016/j.optmat.2010.11.022
 
6. K.Uchida, S.Kanenko, S.Omi et al., J. Opt. Soc. Am. B, 11, 1236 (1994).
https://doi.org/10.1364/JOSAB.11.001236
 
7. S.Islam, N.Bidin, S.Riaz et al., Sensors and Actuators B: Chemical, 221, 993 (2015).
https://doi.org/10.1016/j.snb.2015.06.095
 
8. S.Islam, N.Bidin, S.Riaz et al., Sensors and Actuators B: Chemical, 225, 66 (2016).
https://doi.org/10.1016/j.snb.2015.11.016
 
9. S.Sun, P.Song, J.Cui et al., Catal. Sci. Technol., 9, 4198 (2019).
https://doi.org/10.1039/C9CY01020C
 
10. R.Azouani, A.Soloviev, M.Benmami et al., J. Phys. Chem. C, 111, 16243 (2007).
https://doi.org/10.1021/jp073949h
 
11. P.Gorbovyi, A.Uklein, S.Tieng et al., Nanoscale, 3, 1807 (2011).
https://doi.org/10.1039/c0nr00909a
 
12. O.N.Bezkrovnaya, I.M.Pritula, A.G.Plaksyi et al., J. of Non-Crystalline Solids, 389, 11 (2014).
https://doi.org/10.1016/j.jnoncrysol.2014.01.052
 
13. O.N.Bezkrovnaya, G.N.Babenko, I.M.Pritula et al., J. Non-Crystalline Solids, 535, 119957 (2020).
https://doi.org/10.1016/j.jnoncrysol.2020.119957
 
14. A.Soloviev, R.Tufeu, C.Sanchez et al., J. Phys. Chem. B, 105, 4175 (2001).
https://doi.org/10.1021/jp0040190
 
15. I.Pritula, O.Bezkrovnaya, M.Kolybayeva et al., Mater. Chem. Phys., 129, 777 (2011).
https://doi.org/10.1016/j.matchemphys.2011.04.080
 
16. E.Yariv, R.Reisfeld, Ts.Saraidarov et al., J. Non-Crystalline Solids, 305, 354 (2002).
https://doi.org/10.1016/S0022-3093(02)01115-8
 
17. X.Zhang, H.Zheng, Bull. Mater. Sci., 31, 787 (2008).
https://doi.org/10.1007/s12034-008-0125-y
 
18. N.Viart, D.Niznansky, J.L.Rehspringer, J. Sol-Gel Sci. Tech., 8, 183 (1997).
https://doi.org/10.1007/BF02436838
 
19. P.Innocenzi, G.Brusatin, M.Guglielmi et al., Chem. Mater., 11, 1672 (1999).
https://doi.org/10.1021/cm980734z
 
20. C.F.Song, M.K.Lu, P.Yang et al., Thin Solid Films. 413, 155 (2002).
https://doi.org/10.1016/S0040-6090(02)00440-6
 
21. A.Amlouk, L.El Mir, S.Kraiem et al., J. Physics and Chemistry of Solids, 67, 1464 (2006)
https://doi.org/10.1016/j.jpcs.2006.01.116
 
22. S.Valencia, J.M.Marin, G.Restrepo, The Open Materials Science Journal, 4, 9 (2010).
https://doi.org/10.2174/1874088X01004020009
 
23. J.Xu, L.Li, Y.Yan et al., J. Colloid and Interface Sci., 318, 29 (2008).
https://doi.org/10.1016/j.jcis.2007.10.004
 
24. Y.Zhao, Ch.Li, X.Liu et al., Mater. Lett., 61, 79 (2007).
https://doi.org/10.1016/j.matlet.2006.04.010
 
25. S.A.Abdullah, M.Z.Sahdan, N.Nafarizal et al., in: Intern. Seminar on Mathem. and Phys. in Sciences and Technol., 2017, Malaysia, J. Physics: Conf. Series, 995, 012067 (2018).
https://doi.org/10.1088/1742-6596/995/1/012067
 
26. L.Liu, J.Li, T.-K.Sham, Canadian J. Chemistry, 93, 1 (2015).
https://doi.org/10.1139/cjc-2014-0254

Current number: