Funct. Mater. 2020; 27 4: 710-715.

doi:https://doi.org/10.15407/fm27.04.710

Structural and phase composition features of titanium and chromium nitride coatings obtained by ion-plasma deposition

D.B.Hlushkova1, A.I.Voronkov1, N.E.Kalinina2, V.T.Kalinin3, L.H.Polonskyi4, A.I.Stepaniuk1

1Kharkiv National Automobile and Highway University, 25 Y.Mudrogo Str., 61002 Kharkiv, Ukraine
2O.Honchar Dnipro National University, 72 Gagarin Ave., 49010 Dnipro, Ukraine
3National Metallurgical Academy of Ukraine, 4 Gagarin Ave., 49600 Dnipro, Ukraine
4Zhytomyr Polytechnic State University, 103 Chudnivska Str., 10005 Zhytomyr, Ukraine

Abstract: 

Phase composition, texture, and stress state in coatings based on Ti-N, Cr-N, and Ti-Cr-N systems obtained by ion-plasma deposition method are studied using an X-ray difractometry (by structural analysis) Texture and high compressive stresses up to ~ 3 GPa are revealed in all observed phases (TiN, Cr2N). Factors affecting the residual-stress level are discussed, and the model of stress-state formation is proposed.

Keywords: 
titanium nitrides, chromium nitrides, X-ray diffractometry, coatings, residual stresses, texture, phase composition.
References: 
1. L.I.Pogadaev, Probl. Mechan.Engin. Machine Reliability, 3, 29 (2003).
 
2. L.I.Tushinsky, Theory and Technology of Strengthening of Metal Alloys, Novosibirsk, Nauka (1990) [in Russian].
 
3. C.B.Carter, D.B.Williams. Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry, Springer, IP (2016).
 
4. M.Lee, X-Ray Diffraction for Materials Research: From Fundamentals to Applications, CRC Press, Hardback (2016).
https://doi.org/10.1201/b19936
 
5. D.B.Hlushkova, O.D.Hrinchenko, L.L.Kostina, A.P.Cholodov, Probl. Atom. Sci. Tehn., 113, 181 (2018).
 
6. Materials Science of Thin Films, 2nd Ed. by M.Ohrig, Academic Press (2001).
 
7. V.V.Kudinov, Plasma Coatings, Nauka, Moscow (2007) [in Russian].
 
8. A.P.Shpak, Yu.A. Kunitskii, Z.A.Samoilenko, Self-organization of Structure in Materials of Different Nature, Akademperiodika, Kyiv (2002).
 
9. D.S.Krikun, in: Proc. Intern. Res.-to-Practice Conf. Students, Post-Graduate and Postdoctoral Researchers Youth and Scientific-and-Technological Advance, Kyiv (2013), p.38.
 
10. J.M.ZuoJohn, C.H.Spence, Advanced Transmission Electron Microscopy. Springer, NY (2017).
 
11. L.I.Mirkin, Structural Control of Engineering Materials: Handbook, Mashinostroenie, Moscow (1999) [in Russian].
 
12. J.I.Goldstein, D.E.Newbury, J.R.Michael et al., Scanning Electron Microscopy and X-Ray Microanalysis, Springer, NY (2017).
https://doi.org/10.1007/978-1-4939-6676-9_27
 
13. N.E.Kalinina, D.B.Hlushkova, O.D.Hrinchenko et al., Probl. Atom. Sci. Tehn., 120, 151 (2019).
 
14. D.Su, Advanced Electron Microscopy Characterization of Nanomaterials for Catalysis, v.2 (2017), p.70..
https://doi.org/10.1016/j.gee.2017.02.001
 
15. M.A.Krivoglaz, Theory of X-ray Scattering and Thermal Neutrons by Real Crystals, Nauka, Moscow (2000) [in Russian].
 
16. D.B.Hlushkova, Y.V.Ryzhkov, L.L.Kostina, S.V.Demchenko, Probl. Atom. Sci. Tehn., 113, 208 (2018).
 
 
 

Current number: