Funct. Mater. 2020; 27 4: 716-722.

doi:https://doi.org/10.15407/fm27.04.716

Features of the contact interaction in the AlB12-NiCrBSiC system

A.E.Terentiev, A.P.Umanskyi, V.P.Konoval, V.B.Muratov, M.S.Storozhenko, A.A.Vasiliev

I.Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03680 Kyiv, Ukraine

Abstract: 

The contact interaction between a NiCrBSiC self-fluxing eutectic alloy and hot-pressed α-AlB12 aluminium dodecaboride ceramics has been investigated by the sessile drop method in vacuum at a temperature of 1823 K. The wetting kinetics was studied, and contact angles in this system were determined. It was found that the self-fluxing alloy wets the AlB12 ceramics with the formation of the contact angle θ = 35-40 deg, and in this case the interaction occurs due to the dissolution of the ceramics along the grain boundaries. The processes of diffusion of B and Al from the ceramic substrate into the NiCrBSiC drop are initiated, leading to a change in the chemical composition of the drop. Thus, according to the criterion of the contact angle and due to the intense nature of the interphase interaction in the self-fluxing alloy-AlB12 system, the use of the technology of liquid-phase sintering in the development of composite powder materials for wear-resistant thermal coatings is undesirable.

Keywords: 
self-fluxing alloy, aluminium dodecaboride ceramics, wetting, contact angle, interfacial zone, metal-ceramic material.
References: 
1. N.A.Klinskaya-Rudenskaya, B.P.Kuzmin, Fiz. Khim. Obrab. Met., 1, 55 (1996).
 
2. A.N.Stepanchuk, M.B.Shevchuk, A.A.Demidenko, Tsvetn. Met., 1, 63 (2014).
 
3. M.S.Storozhenko, A.P.Umanskii, A.E.Terentiev, I.M.Zakiev, Powder Metall. Met. Ceram., 56, 60 (2017).
https://doi.org/10.1007/s11106-017-9872-x
 
4. A.J.Horlock, D.G.McCartney, P.H Shipway, J.V.Wood, Mater. Sci., A336, 88 (2002).
https://doi.org/10.1016/S0921-5093(01)01918-9
 
5. R.Rachidi, B.Kihel, F.Delaunois et al., Mater. Environ. Sci., 8, 4550 (2017).
https://doi.org/10.26872/jmes.2017.8.12.480
 
6. L.C.Betancourt-Dougherty, R.W.Smith, Wear, 217, 147 (1998).
https://doi.org/10.1016/S0043-1648(97)00212-3
 
7. Q.Li, T.C.Lei, W.Z.Chen, Surf. Coat. Technol., 114, 278 (1999).
https://doi.org/10.1016/S0257-8972(99)00055-9
 
8. A.Surzhenkov, A.Vallikiv, V.Mikli et al., The 2nd Intern. Conf. Manufact. Engin. Management, 33 (2012).
 
9. O.Umanskyi, M.Storozhenko, I.Hussainova et al., Medzhygotyra, 22, 15 (2016).
https://doi.org/10.5755/j01.ms.22.1.8093
 
10. O.Umanskyi, M.Storozhenko, M.Antonov et al., Key Eng. Mat., 604, 16 (2019).
https://doi.org/10.4028/www.scientific.net/KEM.604.16
 
11. A.A.Ivanko, Hardness: A Handbook, Naukova Dumka, Kiev (1968).
 
12. G.V.Samsonov, T.I.Serebyakova, V.N.Neronov, Borides: A Handbook, Atomizdat, Moscow (1975) [in Russian].
 
13. P.S.Kislyi, V.A.Neronov, T.A.Prikhna, Yu.V.Bevza, Aluminum Borides, Naukova Dumka, Kiev (1990) [in Russian].
 
14. A.Prikhna, R.R.Barvitskyi, M.B.Karpets, J. Superhard Mater., 39, 299 (2017).
https://doi.org/10.3103/S106345761705001X
 
15. O.Umanskyi, M.Storozhenko, V.Krasovskyi, M.Pareyko, J. Superhard Mater., 99, 39 (2017).
https://doi.org/10.3103/S1063457617020046
 
16. P.S.Kislyi, N.I.Bondaruk, M.S.Borovikova et al., Cermets, Naukova Dumka, Kiev (1985).
 
17. L.I.Tuchinskii, Composite Materials Obtained by the Impregnation Method, Metallurgiya, Moscow (1986) [in Russian].
 
18. Yu.V.Naidich, Contact Phenomena in Metallic Melts, Naukova Dumka, Kiev (1972).
 
19. A.P.Umanskii, M.S.Storozhenko, A.E.Terentiev, I.S.Martsenyuk, Powder Metall. Met. Ceram., 53, 359 (2014).
https://doi.org/10.1007/s11106-014-9624-0
 
20. A.E.Terentiev, Functional Materials, 26, 507 (2019).
 
21. M.Storozhenko, O.Umanskyi, V.Krasovskyi et al., J. Alloys Compd.,778, 15 (2019).
https://doi.org/10.1016/j.jallcom.2018.11.102
 
22. A.Ya.Kulik, Yu.S.Borisov, A.S.Mnukhin, Thermal Spraying of Composite Powders, Mechanical Engineering, Leningrad, (1985) [in Russian].
 
23. A.E.Terentjev, Probl. Tribology, 1, 77 (2014).
 

Current number: