Funct. Mater. 2020; 27 4: 736-743.

doi:https://doi.org/10.15407/fm27.04.736

Structural engineering of multi-period (TiMo)N/ZrN vacuum arc coatings

O.V.Sobol1, N.V.Pinchuk1, A.A.Meylekhov1, V.V.Subbotina1, Osman Dur2, V.A.Stolbovoy3, D.V.Kovteba3

1National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova St., 61002 Kharkiv,Ukraine
2Hacettepe University Technopolis, Universiteler Mahallesi 1596. Cadde 6. F-Book Kat:3 Beytepe, 06800 Ankara, Turkey
3National Science Center Kharkiv Institute of Physics and Technology, 1 Akademicheskaya St., 61108 Kharkiv, Ukraine

Abstract: 

The effect of the bias potential applied to the substrate during deposition and the layer thickness on the elemental composition, structure, substructure, and stress-strain state of (TiMo)N/ZrN layers of multi-period coatings is studied. The results of elemental analysis indicate a decrease in the ratio (Ti + Mo)/Zr with an increase in the bias potential and with a decrease in the layer thickness. At the structural level, appearance of additional diffraction peaks for (TiMo)N/ZrN coatings with the thinnest (about 12 nm) layers was revealed. The appearance of such peaks is explained by the effect of mixing at the interface between layers due to the implantation of accelerated particles. It was found that alloying of Ti with Mo atoms in (TiMo)N layers leads to a large compression strain (about 5 %). In monometallic ZrN layers, the value of macrostrain is more than 2 times smaller. At the substructural level, the formation of (TiMo)N solid solution also leads to higher microdeformation in comparison with a similar parameter in ZrN monometallic layers. The hardness of multi-period (TiMo)N/ZrN composites reaches a high value of 35 GPa.

Keywords: 
structural engineering, vacuum arc technology, coating, Layer thickness, bias potential, structure, substructure, stress-strain state, hardness.
References: 
1. C.Li, J.C.Li, M.Zhao, Q.Jiang, J. Alloys Comp., 475, 752 (2009).
https://doi.org/10.1016/j.jallcom.2008.07.124
 
2. J.W.Yeh, S.K.Chen, S.J.Lin et al., Advan. Engin. Mater., 6, 299 (2004).
https://doi.org/10.1002/adem.200300567
 
3. O.V.Sobol', A.A.Andreev, V.F.Gorban, Metal Sci. Heat Treat., 58, 40 (2016).
https://doi.org/10.1007/s11041-016-9962-2
 
4. O.V.Sobol', A.A.Andreev, V.F.Gorban et al., J. Nano- Electron. Phys., 8, 01042 (2016).
 
5. M.A.Glushchenko, E.V.Lutsenko, O.V.Sobol' et al., J. Nano- Electron. Phys., 8, 03015 (2016).
https://doi.org/10.21272/jnep.8(3).03015
 
6. M.A.Glushchenko, V.V.Belozyorov, O.V.Sobol' et al., J. Nano- Electron. Phys., 9, 02015 (2017).
https://doi.org/10.21272/jnep.9(2).02015
 
7. R.Kumar, Z.Ahmed, H.Kaur et al., Catalys. Sci. Technol., 10, 2213 (2020).
https://doi.org/10.1039/C9CY02526J
 
8. O.V.Sobol', O.Dur, Functional Materials, 27, 100 (2020).
 
9. Y.Sun, Y.Chen, N.Tsuji, S.Guan, J. Alloys Comp., 819, 152956 (2020).
https://doi.org/10.1016/j.jallcom.2019.152956
 
10. O.V.Sobol', A.A.Meylekhov, V.A.Stolbovoy, A.A.Postelnyk, J. Nano- .Electron. Phys., 8, 03039 (2016).
https://doi.org/10.21272/jnep.8(3).03039
 
11. S.H.Wu, Z.Q.Hou, J.Y.Zhang et al., Scripta Mater., 172, 61 (2019).
https://doi.org/10.1016/j.scriptamat.2019.07.005
 
12. J.Prochazka, P.Karvankova, G.M.Veprek-Heijman, S.Veprek, Mater. Sci. Engin. A, 384, 102 (2004).
https://doi.org/10.1016/j.msea.2004.05.046
 
13. J.Xu, M.Kamiko, Y.Zhou et al., J. Appl. Phys., 89, 3674 (2001).
https://doi.org/10.1063/1.1353809
 
14. M.A.Zhadko, A.I.Zubkov, O.V.Sobol', J. Nano- Electron. Phys., 10, 03003 (2018).
https://doi.org/10.21272/jnep.10(3).03003
 
15. P.H.Mayrhofer, C.Mitterer, J.G.Wen et al., Appl. Phys. Lett., 86, 131909-3 (2005).
https://doi.org/10.1063/1.1887824
 
16. O.Sobol', A.Meylekhov, A.Postelnyk, Lecture Notes Mechan. Engin., 146 (2019).
https://doi.org/10.1007/978-3-319-93587-4_16
 
17. O.V.Sobol', R.P.Mygushchenko, A.A.Postelnyk, J. Nano- .Electron. Phys., 10, 03009 (2018).
https://doi.org/10.21272/jnep.10(3).03009
 
18. M.Shinn, L.Hultman, S.A.Barnett, J. Mater. Res., 7, 901 (1992).
https://doi.org/10.1557/JMR.1992.0901
 
19. Q.Yang, C.He, L.R.Zhao, J-P.Immarigeon, Scripta Mater., 46, 293 (2002).
https://doi.org/10.1016/S1359-6462(01)01241-6
 
20. Y.-Z.Tsai, J.-G.Duh, Surf. Coat. Technol., 200, 1683 (2005).
https://doi.org/10.1016/j.surfcoat.2005.08.077
 
21. M.Shinn, S.A.Barnett, Appl. Phys. Lett., 64, 61 (1994).
https://doi.org/10.1063/1.110922
 
22. Xi Chu, S.A.Barnett, J. Appl. Phys., 77, 4403 (1995).
https://doi.org/10.1063/1.359467
 
23. W.D.Sproul, Surf. Coat. Technol., 1, 170 (1996).
https://doi.org/10.1016/S0257-8972(96)02977-5
 
24. O.V.Sobol', A.A.Meilekhov, Techn. Phys. Lett., 44, 63 (2018).
https://doi.org/10.1134/S1063785018010224
 
25. O.V.Sobol', A.A.Postelnyk, A.A.Meylekhov et al., J. Nano- .Electron. Phys., 9, 03003-1 (2017).
https://doi.org/10.21272/jnep.9(3).03003
 
26. O.V.Sobol', O.A.Shovkoplyas, Techn. Phys. Lett., 39, 536 (2013).
https://doi.org/10.1134/S1063785013060126
 
27. M.V.Reshetnyak, O.V.Sobol', PSE, 6 (3-4) (2008).
 
28. http://www.icdd.com
 
29. I.C.Noyanand, J.B.Cohen, Springer-Verlag, NewYork (1987), 50.
 
30. I.F.Mikhailov, A.A.Baturin, A.I.Mikhailov, S.S.Borisova, Functional Materials, 19, 126 (2012).
 
31. C.Genzel, Phys. Stat. Solidi (a), 159, 283 (1997).
https://doi.org/10.1002/1521-396X(199702)159:2<283::AID-PSSA283>3.0.CO;2-O
 
32. C.Genzel, W.Reinmers, Phys. Stat. Solidi: A-Appl. Res., 166, 751 (1998).
https://doi.org/10.1002/(SICI)1521-396X(199804)166:2<751::AID-PSSA751>3.0.CO;2-L
 
 
   
 
 

.

Current number: