Funct. Mater. 2020; 27 4: 767-773.

doi:https://doi.org/10.15407/fm27.04.767

Development of calcium phosphate-silicate glass ceramic materials resistant to biochemical and mechanical destruction

O.V.Savvova1, V.M.Shimon 2 , O.V.Babich3, O.I.Fesenko1

1O.Beketov National University of Urban Economy in Kharkiv, 17 Marshal Bazhanov Str., 61002 Kharkiv, Ukraine
2State University Uzhhorod National University, 3 Narodna Sq., 88000 Uzhhorod, Ukraine
3Ukrainian Research Institute for Environmental Problems, 6 Bakulina Str., 61166 Kharkiv, Ukraine

Abstract: 

The promising directions of the bioactive glass-materials development for bone endoprosthetics with high ability to bone regeneration are analyzed. The relevance of the development of bioactive glass-ceramic materials with reduced resorption periods has been established. Has been developed a methodological approach to establish the destruction of bioactive materials for bone endoprosthetics in vitro, which consists in assessing the generalizing effect of chemical, biological and mechanical factors on the endoprosthesis material in vivo. Were grounded the choice of the oxide system Na2O-K2O-Li2O-CaO-MgO-ZnO- ZrO2-TiO2-Al2O3-B2O3- P2O5-SiO2 and microadditives CaF2, MnO2, CeO2, CoO, V2O5, SrO, Cu2O, MoO3, La2O3, for obtaining bioactive glass-ceramic materials; were synthesized model glasses with a CaO/P2O5 ratio = 1.66÷1.7, and based on which were obtained glass-ceramic materials under the conditions of a low-temperature single-stage heat treatment. The ability to destruction research glass-ceramic materials in vitro and their mechanical properties under load conditions in model body fluids have been determined.

Keywords: 
calcium phosphate glass-ceramic materials, bioactivity, single-stage heat treatment, mechano-destruction, endoprosthetics.
References: 
1. Huawei Qu, Hongya Fu, Zhenyu Han, Yang Sun, RSC Adv., 9, 26252 (2019).
https://doi.org/10.1039/C9RA05214C
 
2. O.Savvova, O.Babich, O.Fesenko, Biocompatible Glass-ceramic Coatings. Calcium-phosphate-silicate Coatings on Titanium for Dental Implants, SIA OmniScriptum Publishing, Mauritius (2018).
 
3. L.L.Hench, J. Mater. Sci. Mater. Med., 26, 86 (2015).
https://doi.org/10.1007/s10856-015-5425-3
 
4. D.Shi, Biomaterials and Tissue Engineering, Ser.: Biological and Medical Physics, Biomedical Engineering, Springer-Verlag, Berlin Meidelberg (2004).
https://doi.org/10.1007/978-3-662-06104-6
 
5. O.V.Savvova, L.L.Bragina, G.N.Shadrina et al., Glass and Ceramics, 74, 1 (2017).
https://doi.org/10.1007/s10717-017-9922-3
 
6. M.Catauro, F.Bollino, J. Bone Rep. Recomm., 3, 1 (2017).
 
7. P.D.Sarkisov, N.Yu.Michailenko, E.E.Stroganova et al., .Proc. XIX Int. Congr. on Glass, Edinburg (2001), p.23.
 
8. I.Kansal, Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics, Universidade de Aveiro, Departamento de Engenharia de Materiais e Ceramica (2015).
 
9. L.Floroian, Med. Sci., 3, VI (2010).
 
10. W.Elshahawy, Biocompatibility. Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, INTEX (2011).
https://doi.org/10.5772/18475
 
11. M.Caicedo, J.J.Jacobs, A.Reddy, N.J.Hallab, J. Biomed Mater. Res. A., 86, ??? (2008).
 
12. A.H.Wang, Y.Han, K.W.Xu, Acta Biomater., 5 (2009).
 
13. A.M.Pietak, J.W.Reid, M.J.Stott, Biomater., 28 (2007).
https://doi.org/10.1016/j.biomaterials.2007.05.003
 
14. A.A.Appen, Glass Chemistry, Chemistry, Leningrad (1974) [in Russian].
 
15. O.V.Savvova, O.V.Babich, G.N.Shadrina, Functional Materials, 21, 4 (2014).
https://doi.org/10.15407/fm21.04.421
 

Current number: