Funct. Mater. 2020; 27 4: 794-799.

doi:https://doi.org/10.15407/fm27.04.794

Structural characterization of gold nanoparticles generated through the use of tryptophan

Iu.Mukha1, N.Vityuk1, A.Khodko2, O.Severynovska1, A.Eremenko1

1O.Chuiko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
2Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., 03039 Kyiv, Ukraine

Abstract: 

The application of gold nanoparticles (Au NPs) in biomedicine requires a low toxicity of metallic nanosystems, that can be achieved through the use of amino acid tryptophan (Trp) as reducer of gold ions and stabilizer of obtained Au NPs particles. In the work gold colloids prepared in the presence of Trp were compared with those obtained with commonly used reducing agent NaBH4 and stabilizer SDS. As was shown by UV-vis spectroscopy, electron microscopy and mass-spectrometry data, Au NPs were characterized by localized surface plasmon resonance band with maxima at 540-580 nm, nanoscale dimensionality and common trends during the fragmentation reflected as a series of intense single monoisotopic peaks with a pitch of 197 Da that refers to the Aun clusters. In summary, amino acid tryptophan as bifunctional agent satisfies the synthetic approach to obtain nanosized gold.

Keywords: 
gold, nanoparticle, tryptophan, clusters, UV-vis, TEM, mass spectra.
References: 
1. K.Sztandera, M.Gorzkiewicz, B.Klajnert-Maculewicz, Mol. Pharm., 16, 1 (2019).
https://doi.org/10.1021/acs.molpharmaceut.8b00810
 
2. A.M.Grumezescu (ed.), Elsevier, v.7 (2016), p.588.
 
3. G.Liu, Q.Li, W.Ni et al., Int. J. Nanomed., 10, 6075 (2015).
 
4. P.Selvakannan, S.Mandal, S.Phadtare et al., J. Coll. Int. Sci., 269, 97 (2004)
https://doi.org/10.1016/S0021-9797(03)00616-7
 
5. A.Nasrolahi Shirazi, K.Paquin, N.Howlett et al., Molecules, 19, 13319 (2014).
https://doi.org/10.3390/molecules190913319
 
6. A.Khodko, N.Kachalova, S.Scherbakov et al., Nanoscale Res. Lett.. 12, 271 (2017).
https://doi.org/10.1186/s11671-017-2044-6
 
7. S.Keki, L.Nagy, G.Deak et al., J. Amer. Soc. Mass Spectr., 15, 1455 (2004)
https://doi.org/10.1016/j.jasms.2004.07.001
 
8. E.M.Pena-mendez, J.R.Hernandez-fernaud, R.Nagender et al., Chem. Listy. 102, 1394 (2008).
 
9. V.Vukstich, L.Romanova, I.Megela et al., Tech. Phys. Lett., 40, 263 (2014).
https://doi.org/10.1134/S1063785014030195
 
10. S.Vazquez, R.J.W.Truscott, R.A.J.O'Hair et al., J. Am. Soc. Mass Spec., 12, 786 (2001).
https://doi.org/10.1016/S1044-0305(01)00255-0
 
11. Iu.Mukha, N.Vityuk, O.Severynovska et al., Nanoscale Res. Lett., 11, 101 (2016).
https://doi.org/10.1186/s11671-016-1318-8
 
12. Iu,Mukha, N.Vityuk, G.Grodzyuk et al., J. Nanosci.Nanotech., 12, 8987 (2017).
https://doi.org/10.1166/jnn.2017.14106
 
13. I.Shmarakov, Iu.Mukha, N.Vityuk et al., Nanoscale Res. Lett., 12, 333 (2017).
https://doi.org/10.1186/s11671-017-2112-y
 
14. H.Katifelis, I.Mukha, P.Bouziotis et al., Int. J. Nanomed., 15, 6019 (2020).
https://doi.org/10.2147/IJN.S251760
 

Current number: