Funct. Mater. 2020; 27 4: 800-810.

doi:https://doi.org/10.15407/fm27.04.800

Singlet open-shell conjugated networks generated by singular graphs: Use of Huckel-like models

A.V.Luzanov

SSI Institute of Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

We show how the conventional tight-binding (TB), i. e., Huckel method can be consistently extended to open-shell singlet ground states of polyradical alternant systems that correspond to singular graphs. This leads us to the open-shell TB (OS-TB) model which is presented in detail and compared here with more complicated π-electron approximations. In particular, the earlier introduced quasi-correlated TB (QCTB) method and its extension (EQC) are involved into assessing the accuracy of OS-TB. It is shown that commonly used bond-order matrices, as well as electron-unpairing densities are described well by OS-TB, whereas π-electron Green functions generally are not. At the same time, we demonstrate that the related models, QCTB and EQC, provide reasonable estimates of molecular conductance (at the Fermi energy) in polyradical conjugated networks. The obtained results may be used for a design of active molecular elements in nanoelectronics.

Keywords: 
polyradicals, electron unpairing, singular molecular graphs, long-range effects, spin correlators, molecular conductance.
References: 
1. A.D.Guclu, P.Potasz, M.Korkusinski, P.Hawrylak, Graphene Quantum Dots, Springer, Berlin (2014).
https://doi.org/10.1007/978-3-662-44611-9
 
2. R.Saito, G.Dresselhaus, M.S.Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press, London (1998).
https://doi.org/10.1142/p080
 
3. M.Damnjanovi'c, I.Milo'sevi'c, Line Groups in Physics-Theory and Applications to Nanotubes and Polymers, Springer, Berlin Heidelberg (2010).
 
4. M.Nakano, B.Champagne, J. Phys. Chem. Lett., 6, 3236 (2015)
https://doi.org/10.1021/acs.jpclett.5b00956
 
M.Nakano, Chem. Rec., 17, 27 (2017).
https://doi.org/10.1002/tcr.201600094
 
5. C.L.Wang, H.L.Dong, W.P.Hu et al., Chem. Rev., 112, 2208 (2012).
https://doi.org/10.1021/cr100380z
 
6. Z.Bullard, E.C.Girao, J.R.Owens et al., Sci. Rep., 5, 7634 (2015).
https://doi.org/10.1038/srep07634
 
7. J.R.Dias, G.G.Cash, J. Chem. Inf. Comput. Sci., 41, 129 (2001)
https://doi.org/10.1021/ci000064t
 
J.R.Dias, Open Org. Chem. J., 5, 112 (2011).
https://doi.org/10.2174/1874364101105010112
 
8. G.L.Collatz. U.Sinogowitz, Abh. Math. Semin. Univ. Hamb., 21, 63 (1957).
https://doi.org/10.1007/BF02941924
 
9. I.Sciriha, Electron. J. Algebra, 16, 451 {2007).
https://doi.org/10.13001/1081-3810.1215
 
10. A.V.Luzanov, Funct. Mater., 21, 437 (2014).
https://doi.org/10.15407/fm21.04.437
 
11. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151.
 
12. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017).
https://doi.org/10.1063/1.4975196
 
13. G.G.Hall, Proc. R. Soc. A, 229, 251(1955).
https://doi.org/10.1098/rspa.1955.0085
 
14. C.A.Coulson, G.S.Rushbrooke, Proc. Cambridge Phil. Soc., 36, 193 (1940).
https://doi.org/10.1017/S0305004100017163
 
15. S.G.Davison, A.T.Amos, J. Chem. Phys., 43, 2223 (1965).
https://doi.org/10.1063/1.1697114
 
16. A.Graovac, O.E.Polansky, N.Trinajstic, N.Tyutyulkov, Z. Naturforsch., 30a, 1696 (1975).
https://doi.org/10.1515/zna-1975-1230
 
17. D.Doehnert, J.Koutecky, J. Am. Chem. Soc., 102, 1789 (1980).
https://doi.org/10.1021/ja00526a005
 
18. M.Head-Gordon, Chem. Phys. Lett., 372, 508 (2003).
https://doi.org/10.1016/S0009-2614(03)00422-6
 
19. A.V.Luzanov, in: Nanophotonics, Nanooptics, Nanobiotechnology, and Their Applications (NANO 2018) (Springer Proceedings in Physics); ed.by O.Fesenko, L.Yatsenko, Springer, Cham., v.222 (2019), p.341.
 
20. H.C.Longuet-Higgins, J. Chem. Phys., 18, 265 (1950).
https://doi.org/10.1063/1.1747618
 
21. A.V.Luzanov, Funct. Mater., 27,147, (2020).
 
22. M.M.Mestechkin, G.T.Klimko, V.A.Kuz'mitskii, Teor. Eksp. Khim., 20, 641 (1984).
 
23. G.T.Klimko, M.M.Mestechkin, B.N.Plakhutin, G.M.Zhidomirov, Int. J. Quantum Chem., 37, 35 (1990).
https://doi.org/10.1002/qua.560370104
 
24. C.C.J.Roothaan, Rev. Mod. Phys., 32, 179 (1960).
https://doi.org/10.1103/RevModPhys.32.179
 
25. K.K.Stavrev, M.C.Zerner, Int. J. Quantum. Chem., 65, 877 (1997).
https://doi.org/10.1002/(SICI)1097-461X(1997)65:5<877::AID-QUA51>3.0.CO;2-T
 
26. W.G.Penney, Proc. Roy. Soc. A, 158, 306 (1937).
https://doi.org/10.1098/rspa.1937.0022
 
27. K.B.Wiberg, Tetrahedron, 24, 1083 (1968).
https://doi.org/10.1016/0040-4020(68)88057-3
 
28. A.V.Luzanov, O.V.Prezhdo, I. J. Quantum Chem. Phys., 102, 582 (2005).
https://doi.org/10.1002/qua.20438
 
29. A.V.Luzanov, I. J. Quantum Chem. Phys., 112, 2915 (2012).
https://doi.org/10.1002/qua.24101
 
30. M.Rosenberg, Mol. Phys., 30, 1037 (1975).
https://doi.org/10.1080/00268977500102581
 
31. J.A.Pople, D.P.Santry, Mol. Phys., 9, 301 (1965).
https://doi.org/10.1080/00268976500100431
 
32. H.E.Zimmerman, Quantum Mechanics for Organic Chemists, Academic Press, New York (1975).
 
33. A.V.Luzanov, Y.F.Pedash, S.Mohamad, Theor. Experim. Chem., 26, 513 (1990).
https://doi.org/10.1007/BF00531900
 
34. A.V.Luzanov, Kharkov Univ. Bull., Chem. Ser., 31(54), 6 (2018).
 
35. A.V.Luzanov, Funct. Mater., 26, 152 (2019).
https://doi.org/10.15407/fm26.01.152
 
36. J.D.Roberts, A.Streitwieser, C.M.Regan, J. Am. Chem. Soc., 74, 4579 (1952).
https://doi.org/10.1021/ja01138a038
 
37. M.M.Mestechkin, G.E.Whyman, Mol. Phys., 69, 775 (1990).
https://doi.org/10.1080/00268979000100571
 
38. A.A.Ovchinnikov, Theor. Chem. Acta, 47, 297 (1978)
https://doi.org/10.1007/BF00549259
 
E.H.Lieb, Phys. Rev. Lett., 62, 1201 (1989).
https://doi.org/10.1103/PhysRevLett.62.1201
 
39. J.C.Cuevas, E.Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, Singapore (2010).
https://doi.org/10.1142/7434
 
40. Y.Tsuji, E.Estrada, R.Movassagh, R.Hoffmann, Chem. Rev., 118, 4887 (2018).
https://doi.org/10.1021/acs.chemrev.7b00733
 
41. T.Stuyver, T.Zeng, Y.Tsuji et al., Nano Letters, 18, 7298 (2018).
https://doi.org/10.1021/acs.nanolett.8b03503
 
42. M.H.Garner, W.Bro-Jorgensen, P.D.Pedersen, G.C.Solomon, J. Phys. Chem. C, 122, 26777 (2018).
https://doi.org/10.1021/acs.jpcc.8b05661
 
43. N.Algethami, H.Sadeghi, S.Sangtarash, C.J.Lambert, Nano Letters, 18, 4482 (2018).
https://doi.org/10.1021/acs.nanolett.8b01621
 
44. K.G.L.Pedersen, M.Strange, M.Leijnse et al., Phys. Rev. B, 90, 125413 (2014).
https://doi.org/10.1103/PhysRevB.90.125413
 

.

Current number: