Funct. Mater. 2020; 27 4: 827-835.

doi:https://doi.org/10.15407/fm27.04.827

Synthesis and characteristic of celsian ceramics with the use of glass in the system Li2O-Al2O3-B2O3-SiO2

A.V.Zaichuk1, A.A.Amelina1, Yu.S.Hordieiev1, Y.R.Kalishenko1, N.N.Sribniak2

1State Higher Educational Institution Ukrainian State University of Chemical Technology, 8 Haharina Ave., 49005 Dnipro, Ukraine
2Sumy National Agrarian University, 160 G.Kondratieff Str., 40021 Sumy, Ukraine

Abstract: 

The paper deals with the processes of obtaining the celsian ceramics with a complex of high physical and technical properties. In this case, the directional regulation of the ceramic microstructure and phase composition was carried out by introducing glass of the spodumene composition of the Li2O-Al2O3-B2O3-SiO2 (LABS) system. It is concluded that the content of LABS glass and the firing temperature of ceramic materials directly determine their microstructure and physical and technical properties. The optimal composition and temperature of firing are established for the developed celsian ceramics. It is shown that the introduction of LABS glass contributes to significant intensification of the formation of crystalline phase of monoclinic celsian, as well as sintering of the obtained materials. Ceramic materials with zero values of water absorption and opened porosity determining their high apparent density (2.47-2.61 g/cm3) were synthesized at relatively low temperatures of 1250-1350°C. To achieve the highest indices of mechanical compressive strength (188-242 MPa) and heat resistance (not lower than 1100°C), the most rational content of LABS glass is 20-30 wt.%. Introduction of glass also helps to reduce the CLTE values of celsian ceramic by 7-30 % due to crystallization of a β-spodumene phase. The celsian phase is formed as flat-prismatic crystals. Their shape, size and quantities are determined by the content of LABS glass and heat treatment temperatures. The studies of electro-physical properties have shown that in terms of the values of the dielectric constant (ε = 5.3) and dielectric losses (tgδ = 0.0007), the developed ceramics meet the requirements to the modern dielectric materials operating at high thermo-mechanical loads.

Keywords: 
celsian ceramics, crystalline phase, spodumene, celsian, glass phase, ceramic slip, firing, crystallization, physical and technical properties.
References: 
1. A.V.Zaychuk, A.A.Amelina, Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 63 (2017).
 
2. E.S.Khomenko, A.V.Zaichuk, E.V.Karasik, A.A.Kunitsa, Functional Materials, 25, 613 (2018).
https://doi.org/10.15407/fm25.03.613
 
3. U.S.Corning, E.D.Zanotto, Amer. Cer. Soc. Bull., 89, 19 (2010).
 
4. A.V.Zaichuk, A.A.Amelina, Y.S.Khomenko et al., Voprosy Khimii i Khimicheskoi Tekhnologii, 2, 52 (2020).
https://doi.org/10.32434/0321-4095-2020-129-2-52-59
 
5. D.Hotza, A.P.N. de Oliveira, Adv. Sci. Technol., 68, 1 (2010).
https://doi.org/10.4028/www.scientific.net/AST.68.1
 
6. Z.Shamsudin, A.Hodzic, C. et al., J. Mater. Sci., 46, 5822 (2011).
https://doi.org/10.1007/s10853-011-5538-0
 
7. O.V.Savvova, S.M.Logvinkov, O.V.Babich, A.R.Zdorik, Voprosy Khimii i Khimicheskoi Tekhnologii, 3, 96 (2018).
 
8. P.Zang, R.Taskinen, Engin. Mater., 697, 565 (2016).
https://doi.org/10.4028/www.scientific.net/KEM.697.565
 
9. L.Barbeeri, A.Bomartini, C.Corradi et al., Mater. Res. Bull., 30, 27 (1995).
https://doi.org/10.1016/0025-5408(94)00103-0
 
10. M.N.Ibarra, J.M.Almanza, D.A.Cortes et al., Ceram. Intern., 42, 3491 (2016).
https://doi.org/10.1016/j.ceramint.2015.10.152
 
11. A.S.Hamicaev, Aviacionno-kosmicheskaya Tehnika i Tehnologiya, 5, 42 (2004).
 
12. C.M.Lopez-Badillo, J.Lopez-Cuevas, C.A.Gutierrez-Chavarria et al., J. Eur. Cer. Soc., 33, 3287 (2013).
https://doi.org/10.1016/j.jeurceramsoc.2013.05.014
 
13. Z.Tong, H.Ji, X.Li, Z.Liu, Cer. Intern., 45, 16698 (2019).
https://doi.org/10.1016/j.ceramint.2019.05.137
 
14. Q.Li, D.Cai, Z.Yang et al., Cer. Intern., 45, 1627 (2019).
https://doi.org/10.1016/j.ceramint.2018.10.039
 
15. K.T.Lee, P.B.Aswath, Mater. Sci. Engin..: A, 352, 1 (2003).
 
16. G.A.Khater, M.H.Idris, Cer. Intern., 35, 69 (2009).
https://doi.org/10.1016/j.ceramint.2007.09.118
 
17. S.Wu, L.Xia, B.Shi, G.Wen, J. Eur. Cer. Soc., 38, 727 (2018).
https://doi.org/10.1016/j.jeurceramsoc.2017.09.025
 
18. A.Zaychuk, C.Dimitrov, A.Amelina, D.Wedmid, Rusenskaya University Angel Kanchev, 56, 96 (2017).
 
19. M.V.Andreev, O.O.Drobakhin, Ye.N.Privalov, D.Yu.Saltykov, Telecommun. Radio Engin., 73, 1017 (2014).
https://doi.org/10.1615/TelecomRadEng.v73.i11.70
 
20. M.C.Wang, N.CWu, S.Yang, S.B.Wen, Metallurg. Mater. Trans. A, 33, 171 (2002).
https://doi.org/10.1007/s11661-002-0016-6
 
21. K.H.Kim, F.A.Hummel, in book: Introduction to Phase Equilibria in Ceramic Systems, Basel, New York (1984).
 
22. M.V.Dyadenko, A.I.Gelai, Glass Ceram., 74, 273 (2017).
https://doi.org/10.1007/s10717-017-9978-0
 
23. A.V.Zaichuk, A.A.Amelina, Y.V.Karasik et al., Functional Materials, 26, 174 (2019).
https://doi.org/10.15407/fm26.01.174
 

Current number: