Funct. Mater. 2021; 28 1: 158-169.

doi:https://doi.org/10.15407/fm28.01.158

Numerical simulation of the sintering process of multicomponent composite materials based on iron and glass

T.G.Jabbarov, O.A.Dyshin, M.B.Babanli, I.I.Abbasov

Department of Mechanical and Materials Science Engineering, Azerbaijan State Oil and Industry University, Azadliq Ave., 1010 Baku, Azerbaijan

Abstract: 

Based on the mathematical description of the kinetics of compaction and volumetric shrinkage of a porous body represented by a mixture of cermet powders, taking into account the mechanisms of diffuse coalescence and coagulation, a system of nonlinear differential equations of porosity and granularity was obtained for the solid-phase and liquid-phase stages of the sintering process under conditions of sequential temperature annealing, with certain speeds changes and durations. The obtained equations can be used to control the sintering process by adjusting the level, speed and duration of individual temperature conditions and technical parameters of the mixture, as well as choosing the composition, consistency and geometric characteristics of the components of the powder mixture for the manufacture of a material with desired physical and mechanical properties. The differential equations of the sintering process include the coefficients of volumetric, grain boundary, and surface diffusion, the calculation of which for multicomponent systems requires the calculation of both the self-diffusion coefficients of the components of the system and the coefficients of their mutual diffusion. The sintering process of powders of iron, cast iron and ceramic is considered as the mutual diffusion of two binary alloys: cast iron (iron + carbon) and fayalite (iron + ceramic). The calculation of the coefficient of mutual diffusion of the resulting alloy was carried out according to the Darken formula. For the numerical solution of the problem, the scheme of the Runge-Kutta method of the fourth order of accuracy with a variable integration step is used. A program complex for solving the problem has been developed, the calculation results are shown on the example of an alloy of a powder mixture of iron, cast iron and glass.

Keywords: 
cermet materials, solid-phase sintering, liquid-phase sintering, melting, alloy, fayalite, sintering rheology, homogenization, glass metal, glass-metal materials, Runge-Kutta method, self-diffusion, heterodiffusion, mutual diffusion, grain-boundary diffusion, volumetric diffusion.
References: 
1. R.M.German, Particulate Composites: Fundamentals and Applications, Springer International Publishing (2016).
https://doi.org/10.1007/978-3-319-29917-4_11
 
2. O.N.Lyubimova, A.V.Morkovin, S.A.Dryuk, P.A.Nikiforov, in: Proc. of Intern. Conf. on Physical Mesomechanics of Multilevel Systems, 1623, p.379 (2014).
 
3. O.N.Lyubimova, E.P.Solonenko, Fizich. Mezomekhanika, 19, 114 (2016).
 
4. B.G.Gasanov, Vzaimnaya Diffuziya i Gomogenizaciya v Poroshkovyh Splavah, YUzh.-Ros. Tekhn. Un-t, YURGTU, Novocherkassk (2002) [in Russian].
 
5. T.G.Dzhabbarov, Dissertaciya kand. tekhn. nauk, Baku (1992).
 
6. S.V.Bobyr, Metallofiz. Noveishie Tekhnol., 40, 1437 (2018). DOI:10.15407/mfint.40.11.1437
https://doi.org/10.15407/mfint.40.11.1437
 
7. O.I.Raichenko, Metallofiz. Noveishie Tekhnol., 38, 635 (2016). DOI:10.15407/mfint.38.05.0635
https://doi.org/10.15407/mfint.38.05.0635
 
8. A.Boudilmi, K.Loucif, Noveishie Tekhnol., 40, 1689 (2018). DOI:10.15407/mfint.40.12.1689.
https://doi.org/10.15407/mfint.40.12.1689
 
9. K.I.Romanov, Izvestiya VUZov, Mashinostroenie, 7, 3 (2007).
 
10. R.A.Andrievskij, Poristye Metallokeramicheskie Materialy, Metallurgiya, Moscow (2004) [in Russian].
 
11. V.P.Puzanov, V.A.Kobelev, Strukturoobrazovaniya iz Melkih Materialov s Uchastiem Zhidkih Faz, UrO RAN, Ekaterinburg (2001) [in Russian],
 
12. T.Sinha, Powder Technol., 198, 315 (2010).
https://doi.org/10.1016/j.powtec.2009.10.025
 
13. Yu.I.Rybin, Teoriya Uplotneniya Poroshkovyh Materialov, Uchebnoe Posobie, SPb GPU (2002).
 
14. V.Yu.Dorofeev, S.N.Egorov, Mezhchastichnoe Srashchivanie pri Formirovanii Poroshkovyh Goryachedeformirovannyh Materialov, Metallurgizdat, Moscow (2003) [in Russian].
 
15. Ya.E.Geguzin, Yu.S.Kaganovskij, Usp. Fiz. Nauk, 125, 489 (1978).
https://doi.org/10.3367/UFNr.0125.197807d.0489
 
16. G.A.Libenson, V.Yu.Lopatin, G.V.Komarnackij, in: Formirovanie i Spekanie, MISIS, Moscow (2002) [in Russian].
 
17. V.V.Skorohod, Yu.M.Solonin, I.V.Uvarova, Himicheskie, Diffuzionnye i Reologicheskie Processy v Tekhnologii Poroshkovyh Materialov, Naukova Dumka, Kiev (1990)
 
18. T.G.Jabbarov, O.A.Dyshin, M.B.Babanli, I.I.Abbasov, Prog. Phys. Met., 20, 584 (2019), DOI:0.15407/ufm.20.04.584https://doi.org/10.15407/ufm.20.04.584:2019)
https://doi.org/10.15407/ufm.20.04.584
 
19. J.C.Fisher, J. Appl. Phys., 22, 74 (1951).
https://doi.org/10.1063/1.1699825
 
20. T.Suzuoka, Trans. Jap. Inst. Metals, 2, 25 (1961).
https://doi.org/10.2320/matertrans1960.2.25
 
21. H.S.Levine, MacCallum, Appl. Phys., 595 (1960).
https://doi.org/10.1063/1.1735634
 
22. A.V.Kolesnikov, I.A.Kirikov, Metodologiya i Tekhnologiya Resheniya Slozhnyh Zadach Metodami Funkcional'nyh Gibridnyh Intellektual'nyh Sistem, IPI RAN, Moscow (2007) [in Russian].
 
23. V.P.Puzanov, Strukturoobrazovaniya iz Melkih Materialov s Uchastiem Zhidkih Faz, UrO RAN, Ekaterinburg (2001) [in Russian].
 
24. Yu.G.Dorofeev, V.Yu.Dorofeev, in: Sb. Nauch. Tr. 50 let Poroshkovoj Metallurgii Belorusi. Istoriya, Dostizheniya, Perspektiv, Minsk (2010) [in Russian].

Current number: