Funct. Mater. 2021; 28 1: 187-195.

doi:https://doi.org/10.15407/fm28.01.187

The effect of UV and glow-discharge hydrogen plasma irradiation on the crystalline structure and efficiency of CdTe/CdS thin film solar cells prepared by the quasi-closed volume method

M.M.Harchenko1, A.V.Meriuts1, A.V.Nikitin2, S.V.Surovitskiy1, A.I.Dobrozhan1, Y.V.Buts3

1National Technical University Kharkiv Polytechnic of Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine 2National Science Center Kharkiv Institute of Physics & Technology, 1 Academicheskaya Str., 61108 Kharkiv, Ukraine 3S. Kuznets Kharkiv National University of Economics, 9-A Nauka Ave., 61166 Kharkiv, Ukraine

Abstract: 

It is shown that the crystal structure and photoelectric properties of CdS/CdTe-based solar cells (SCs), fabricated by condensation in a quasi-closed volume, change their characteristics the action of irradiation with a high-dose hydrogen plasma flux. At the same time, the characteristics of these SCs turn out to be insensitive to UV radiation. The change in the structural characteristics under the action of hydrogen plasma is due to the heating factor at a high flux density of ~ 8·1018 cm-2c-1 and hydrogen diffusion to the CdS/CdTe interface, while the degradation of the photoelectric characteristics is mainly associated with physical destruction of the back contactdue to its plasma etching.

Keywords: 
solar cells, irradiation, crystal structure, photoelectric characteristics.
References: 
1. S.Pisoni, M.Stolterfoht, J.Lockinger et al., Scien. Techn. Adv. Mater., 20, 786 (2019).
https://doi.org/10.1080/14686996.2019.1633952
 
2. N.P.Klochko, O.V.Lukianova, V.R.Kopach et al., Solar Energy, 134, 156 (2016).
https://doi.org/10.1016/j.solener.2016.04.031
 
3. T.Feurer, B.Bissig, T.P.Weiss et al., Scien. Techn. Adv. Mater., 19, 263 (2018).
https://doi.org/10.1080/14686996.2018.1444317
 
4. N.P.Klochko, K.S.Klepikova, I.I.Tyukhov et al., Solar Energy, 120, 330 (2015).
https://doi.org/10.1016/j.solener.2015.07.038
 
5. N.I.Klyui, V.G.Litovchenko, V.P.Kostylyov et al., Opto-Electronics Rev., 8, 406 (2000).
 
6. N.I.Klyui, V.G.Litovchenko, I.P.Lisovsky et al., Ukr. J. Phys., 56, 461 (2011).
 
7. N.I.Klyui, Yu.P.Piryatinskii, V.A.Semenovich, Mater. Lett., 35, 334 (1998).
https://doi.org/10.1016/S0167-577X(97)00266-8
 
8. D.L.Batzner, A.Romeo, M.Dobeli et al., in: Proc. 29th IEEE Photovoltaic Specialists Conference; New Orleans, LA; United States; (2002), p.02CH37361.
 
9. G.Yang, E.W.Cho, Y.J.Hwang et al., Energy Technology, 4, 1463 (2016).
https://doi.org/10.1002/ente.201600346
 
10. M.Kharchenko, Phys. Chem. Solid State, 8, 718 (2007).
 
11. B.T.Boiko, M.Kharchenko, in: Proc. XII International Conference on Physics and Technology of Thin Films and Nanosystems (ICPTTFN-XII), Ivano-Frankivsk, Ukraine (2009), p.277.
 
12. H.R.Moutinho, F.S.Hasoon, F.Abulfotuh, K.Kazmerski, J.Vacuum Sci. Techn. A, 13, 2877 (1995)
https://doi.org/10.1116/1.579607
 
13. B.T.Boiko, G.S.Khripunov, V.B.Yurchenko, H.E.Ruda, Solar Energy Mater, Solar Cells, 45, 303 (1997).
https://doi.org/10.1016/S0927-0248(96)00068-2
 
14. S.Y.Nunoue, T.Hemmi, E.Kata, J. Electrochem. Soc., 137, 1248 (1990).
https://doi.org/10.1149/1.2086641
 
15. B.E.McCandidiess, R.W.Birkmire, in: Proc. 26th IEEE Photovoltaic Special Conference: Proceeding of the International Conference, Anaheim (USA) (1997), p.307.
 
16. G.I.Kopach, A.I.Dobrozhan, G.S.Khrypunov et al., Phys. Chem. Solid State, 20, 165 (2019).
https://doi.org/10.15330/pcss.20.2.165-170
 
17. G.D.Tolstolutskaya, A.V.Nikitin, V.V.Ruzhytskyi et al., PAST, 102, 25 (2016).
 
18. A.V.Nikitin, G.D.Tolstolutskaya, V.V.Ruzhytskyi et al., J. Nuclear Mater., 478, 26 (2016).
https://doi.org/10.1016/j.jnucmat.2016.05.032
 

.

Current number: