Funct. Mater. 2021; 28 1: 196-201.

doi:https://doi.org/10.15407/fm28.01.196

Characterization of Si/Mg2Si multilayer mirrors manufactured by sputtering of Mg and Si targets

L.E.Konotopsky, I.A.Kopilets, V.V.Kondratenko, A.V.Fedchenko, S.M.Kosmachev

National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychov Str., 61002 Kharkiv, Ukraine

Abstract: 

The principal possibility of manufacturing Si/Mg2Si multilayers by alternately deposited Si and Mg layers is demonstrated. The study of such Si/Mg2Si multilayer structure in the initial state and after thermal annealing in a temperature range of 100-300°C was made by X-ray diffraction methods. It was shown that a low level of the interface roughness (~ 0.8 nm) can be achieved in the Si/Mg2Si multilayer manufactured by the proposed method. Such Si/Mg2Si multilayers are stable up to 300°C.

Keywords: 
magnetron sputtering, multilayer X-Ray mirror, magnesium silicide, X-ray diffraction, thermal stability.
References: 
1. I.A.Zhitnik, S.V.Kuzin, A.M.Urnov et al., Astron. Lett., 31, 39 (2005).
https://doi.org/10.1134/1.1854795
 
2. B.L.Henke, E.M.Gullikson, J.C.Davis, At. Data Nucl. Data Tables., 54, 181 (1993).
https://doi.org/10.1006/adnd.1993.1013
 
3. Hisataka Takenaka, Satoshi Ichimaru, Tadayuki Ohchia, E.M.Gullikson, J. Electron Spectrosc., 144-147, 1047 (2005).
https://doi.org/10.1016/j.elspec.2005.01.227
 
4. T.Ejima, A.Yamazaki, T.Banse et al., UVSOR Activity Report, 44, 43 (2004).
 
5. K.Le Guen, M.-H.Hu, J.-M.Andre, P.Jonnard, J. Phys. Chem. C, 114, 6484 (2010).
https://doi.org/10.1021/jp911119z
 
6. L.E.Konotopskyi, I.A.Kopylets, V.V.Kondratenko, J. Surf. Phys. Engin.. 13, 24 (2015).
 
7. Haynes, William M., ed. CRC Handbook of Chemistry and Physics (92nd ed.), Boca Raton, FL, CRC Press (2011).
 
8. Xin-Yan Yan, Y.A.Chang, F.Zhang, JPE, 21, 379 (2000).
https://doi.org/10.1361/105497100770339914
 
9. L.E.Konotopskyi, I.A.Kopylets, V.A.Sevrykova et al., J. Nano-Electron. Phys., 8, 02021 (2016).
https://doi.org/10.21272/jnep.8(2).02021
 
10. L.E.Konotopskyi, I.A.Kopylets, V.A.Sevrykova et al., Metallofiz. Noveishie Tekhnol., 38, 825 (2016).
https://doi.org/10.15407/mfint.38.06.0825
 
11. Haochuan Li, Jingtao Zhu, Zhanshan Wang et al., Opt. Mater. Express, 3, 546 (2013)/
https://doi.org/10.1364/OME.3.000546
 
12. D.L.Windt, Comp. Phys., 12, 360 (1998).
https://doi.org/10.1063/1.168689
 
13. C.Montcalm, B.T.Sullivan, H.Pepin et al., Appl. Opt., 33, 2057 (1994).
https://doi.org/10.1364/AO.33.002057
 
14. Jingtao Zhu, Sika Zhou, Haochuan Li et al., Appl. Opt., 49, 3922 (2010)
https://doi.org/10.1364/AO.49.003922
 
15. M.R.J. van Buuren, C.L.Griffiths, H.van Kempen, Surf. Sci.., 314, 172 (1994).
https://doi.org/10.1016/0039-6028(94)90004-3
 
16. L.E.Konotopsky, I.F.Mikhailov, I.A.Kopylets et al., Metallofiz. Noveishie Tekhnol., 39, 767 (2017).
https://doi.org/10.15407/mfint.39.06.0767
 

Current number: