Funct. Mater. 2021; 28 1: 49-54.

doi:https://doi.org/10.15407/fm28.01.49

Electrophysical properties of polychlorotrifluoroethylene - iron-containing carbon fiber nanocomposites

O.M.Lisova1, O.M.Sedov2, L.Ya.Shvartsman2, S.M.Makhno1, G.M.Gunya1, P.P.Gorbyk1

1Chuyko Institute of Surface Chemistry, National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164 Kyiv, Ukraine
2LTD Fronteriya Ukraine, 15 Tsimlyans'ka Str., 69008 Zaporizhzhya, Ukraine

Abstract: 

The samples of polychlorotrifluoroethylene - iron-containing carbon nanofiber (PCTFE - Fe/C) with a thickness of 2 and 0.2 mm were obtained by thermal compression from the polymer melt. A set of electrophysical studies at low frequencies and in the ultrahigh frequency range was performed. It is shown that the percolation transition in the PCTFE - Fe/C 22/78 is achieved at a lower Fe/C 22/78 content and is 0.04 and 0.07 for the Fe/C 60/40, which is explained by the high content of carbon nanofiber in the source Fe/C filler. Impedance spectrometry has shown that at low concentrations of filler (before the percolation transition) in the system, with increasing frequency above 200 Hz, the conductivity increases due to the implementation of the hopping mechanism. Differential thermal analysis has established that the composites have thermal stability from room temperatures up to 280°C and can be used in this temperature range.

Keywords: 
carbon nanofiber, percolation transition, microwave range, electric conductivity, ferromagnetic.
References: 
1. P.Sun, D.Zhang, M.He at al., Electroch. Acta, 337, 135848 (2020).
https://doi.org/10.1016/j.electacta.2020.135848
 
2. C.Li, M.Wu, R.Liu, Appl. Catalysis B: Environmental, 244, 150 (2019).
https://doi.org/10.1016/j.apcatb.2018.11.039
 
3. A.Yousef, R.M.Brooks, M.H.El-Newehy et al., Inter. J. Hydr. Ener., 42, 10407 (2017).
https://doi.org/10.1016/j.ijhydene.2017.01.171
 
4. O.M.Sedov, V.V.Golod, S.M.Makhno et al., Metallophys. Advanc. Technol., 41, 1153 (2019).
 
5. C.Wang, V.Murugadoss, J.Kong et al., Carbon, 140, 696 (2018).
https://doi.org/10.1016/j.carbon.2018.09.006
 
6. Y.Huanga, J.Jib, Y.Chena et al., Compos. B: Engineering, 163, 598 (2019).
 
7. Ye.P.Mamunya, S.L.Vasylenko, Ye.V.Lebedev et al., Polym. J., 25, 62 (2003).
 
8. O.M.Garkusha, S.M.Makhno, G.P.Prikhod'ko et al., Chem. Phys. Tech. Surf., 14, 140 (2008).
 
9. P.Potschke, B.Kretzschmar, A.Janke, Compos. Sci. Technol., 67, 855 (2007).
https://doi.org/10.1016/j.compscitech.2006.02.034
 
10. Yu.I.Sementsov, S.M.Makhno, S.V.Zuravsky et al., Chem., Phys. Tech. Surf., 8, 107 (2017).
 
11. K.J.MacKenzie, O.M.Dunens, A.T.Harris, Ind. Eng. Chem. Res., 49, 5323 (2010).
https://doi.org/10.1021/ie9019787
 
12. L.M.Jakubek, S.Marangoudakis, J.Raingo et al., Biomaterials, 30, 6351 (2009).
https://doi.org/10.1016/j.biomaterials.2009.08.009
 
13. L.M.Ganyuk, V.D.Ignatkov, S.M.Makhno et al., Ukr. Fis. Zhurn., 40, 627 (1995).
 
14. O.M.Lisova, S.M.Makhno, G.M.Gunya et al., Nanosistemy, Nanomaterialy, Nanotehnologiy, 15, 289 (2017).
 
15. V.A.Sotskov. Zh. Tech. Phys., 83, 85 (2013).

Current number: