Funct. Mater. 2021; 28 1: 6-13.

doi:https://doi.org/10.15407/fm28.01.6

Temperature quenching of Ce3+ emission in gadolinium-aluminum garnet Gd3Al5O12

I.V.Berezovskaya1, A.S.Voloshinovskii2, Z.A.Khapko2, O.V.Khomenko1, N.P.Efryushina1, V.P.Dotsenko1

1A.Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya doroga, 65080 Odesa, Ukraine
2I.Franko National University of Lviv, 8 Kyryla i Mefodiya Str., 79005 Lviv, Ukraine

Abstract: 

Gadolinium aluminum garnet (GAG) doped with Ce3+ ions was prepared by a co- precipitation method. The luminescent properties of Ce3+ ions in Gd3(1-x)Ce3xAl5O12 (e = 0.01) were studied in the temperature range of 77-500 K. At 77 K, the Ce3+ doped GAG exhibits broad-band emission with a maximum at 564 nm and a decay time of 68.4 ns. It was shown that the temperature quenching of the Ce3+ emission in GAG starts at 310 K and the quenching temperature (T50%) is 395 K. From the temperature dependence of the luminescence decay time upon excitation in the region of the Ce3+ 4fd1,2 absorption bands, the activation energy for the Ce3+ emission quenching in GAG was found to be 0.51 eV. The quenching mechanism in Ce3+-doped GAG was determined as the thermally induced ionization of Ce3+ ions.

Keywords: 
oxides, chemical synthesis, luminescence, cerium, quenching.
References: 
1. V.Bachmann, Thesis, Utrecht, Universiteit Utrecht (2007).
 
2. C.C.Chiang, M.S.Tsai, M.H.Hon, J. Electrochem. Soc., 154, J326 (2007).
https://doi.org/10.1149/1.2768900
 
3. J.Y.Park, H.C.Jung, G.S.R.Raju et al., Opt. Mater., 32, 293 (2009).
https://doi.org/10.1016/j.optmat.2009.08.004
 
4. J.M.Ogieglo, A.Katelnikovas, A.Zych et al., J. Phys. Chem. A, 117, 2479 (2013).
https://doi.org/10.1021/jp309572p
 
5. V.P.Dotsenko, I.V.Berezovskaya, A.S.Voloshinovskii et al., Mater. Res. Bull., 64, 151 (2015).
https://doi.org/10.1016/j.materresbull.2014.12.056
 
6. K.Kamada, T.Endo, K.Tsutsumi et al., Cryst. Growth Des., 11, 4484 (2011).
https://doi.org/10.1021/cg200694a
 
7. T.Yanagida, K.Kamada, Y.Fujimoto et al., Opt. Mater., 35, 2480 (2013).
https://doi.org/10.1016/j.optmat.2013.07.002
 
8. K.Asami, J.Ueda, S.Tanabe et al., Opt. Mater., 62, 171 (2016).
https://doi.org/10.1016/j.optmat.2016.09.052
 
9. K.Asami, J.Ueda, M.Kitaura et al., J. Luminescence, 198, 418 (2018).
https://doi.org/10.1016/j.jlumin.2018.01.041
 
10. E.J.Popovici, M.Morar, E.Bica et al., J. Optoelectron. Adv. Mater., 13, 617 (2011).
 
11. Y.Kanke, A.Navrotsky, J. Solid State Chem., 141, 424 (1998).
https://doi.org/10.1006/jssc.1998.7969
 
12. J.Li, J.G.Li, Z.Zhang et al., J. Am. Ceram. Soc., 95, 931 (2012).
 
13. A.Jain, R.Koyani, C.Munoz et al., J. Colloid Interf. Sci., 526, 220 (2018).
https://doi.org/10.1016/j.jcis.2018.04.100
 
14. A.C.Sackville Hamilton, G.I.Lampronti et al., J. Phys. Condens. Matter., 26, 116001 (2014).
https://doi.org/10.1088/0953-8984/26/11/116001
 
15. P.Dorenbos, J. Luminescence, 134, 310 (2013).
https://doi.org/10.1016/j.jlumin.2012.08.028
 
16. J.Ueda, S.Tanabe, Opt. Mater.: X, 1, 100018 (2019).
https://doi.org/10.1016/j.omx.2019.100018
 
17. I.V.Berezovskaya, V.P.Dotsenko, A.S.Voloshinovskii et al., Chem. Phys. Lett., 585, 11 (2013).
https://doi.org/10.1016/j.cplett.2013.08.100
 
18. Y.Ch.Lin, M.Bettinelli, M.Karlsson, Chem. Mater., 31, 3851 (2019).
https://doi.org/10.1021/acs.chemmater.8b05300
 
19. S.Arjoca, D.Inomata, Y.Matsushita et al., Cryst. Eng. Comm., 18, 4799 (2016).
https://doi.org/10.1039/C6CE00500D
 
20. K.Bartosiewicz, V.Babin, K.Kamada et al., Opt. Mater., 63, 134 (2017).
https://doi.org/10.1016/j.optmat.2016.05.041
 
21. K.Bartosiewicz, V.Babin, K.Kamada et al., J. Luminescence, 216, 116724 (2019).
https://doi.org/10.1016/j.jlumin.2019.116724
 
22. L.Ning, X.Ji, Y.Dong et al., J. Mater. Chem. C, 4, 5214 (2016).
https://doi.org/10.1039/C6TC01691J
 
23. K.Asami, J.Ueda, M.Shiraiwa et al., Opt. Mater., 87, 117 (2019).
https://doi.org/10.1016/j.optmat.2018.04.049
 
24. I.V.Berezovskaya, Z.A.Khapko, A.S.Voloshinovskii et al., J. Luminescence, 195, 24 (2018).
https://doi.org/10.1016/j.jlumin.2017.11.002
 
25. S.K.Sharma, Y.Ch.Lin, I.Carrasco et al., J. Mater. Chem. C, 6, 8923 (2018).
https://doi.org/10.1039/C8TC02907E
 
26. I.Carvalho, A.J.S.Silva, P.A.M.Nacimento et al., Opt. Mater., 98, 109449 (2019).
https://doi.org/10.1016/j.optmat.2019.109449
 
27. P.Dorenbos, Opt. Mater., 69, 8 (2017).
https://doi.org/10.1016/j.optmat.2017.03.061
 
28. I.Venetsev, V.Khanin, P.Rodnyi et al., IEEE Trans. Nucl. Sci., 65, 2090 (2018).
https://doi.org/10.1109/TNS.2018.2810894
 
29. T.Lesniewski, S.Mahlik, K.Asami et al., Phys. Chem. Chem. Phys., 20, 18380 (2018).
https://doi.org/10.1039/C8CP03176B
 
30. L.Grigorjeva, K.Kamada, M.Nikl et al., Opt. Mater., 75, 331 (2018).
https://doi.org/10.1016/j.optmat.2017.10.054
 
31. Y.Wu, M.Nikl, V.Jary et al., Chem. Phys. Lett., 574, 56 (2013).
https://doi.org/10.1016/j.cplett.2013.04.068
 

Current number: