Funct. Mater. 2021; 28 (2): 287-292.

doi:https://doi.org/10.15407/fm28.02.287

Influence of modified functional additives on the degradable properties of polyethylene

T.V.Dmytriieva, S.K.Krymovska, V.I.Bortnytskyi, S.M.Kobylinskyi, S.V.Riabov

Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48 Kharkivske shose, 02160 Kyiv, Ukraine

Abstract: 

The degradability of polyethylene (PE) compositions with binary functional additives based on polyvinyl alcohol (PVAL) modified with soybean oil (SO) or glycerol (Gly) at a concentration of 1-5 wt.% is investigated. The degradation ability of samples is evaluated by the changes in their physical and mechanical characteristics under UV-irradiation and biological factors of the soil within 120 days; also mass-spectrometry was used to analyze the spectrum of ionic fragments, their number, and the intensity. It has also been established that the addition of soybean oil and binary functional additives based on modified PVAL with SO and Gly leads to an increase in the initial strength of the compositions by 19.5-85 % compared to the original PE; while, after the exposure to UV-irradiation and soil biological factors, the strength of the compositions is significantly reduced due to destructive processes. The mass-spectrometric study of the compositions showed that due to functional additives containing SO, Gly and PVAL, structural changes occurred in PE increase degradability under the influence of destructive factors.

Keywords: 
polyethylene, degradability, soybean oil, polyvinyl alcohol, glycerol, mass-spectrometry.
References: 
1. Yu.Yu.Kercha, S.V.Laptiy, O.G.Yakovenko et al., Komp. Polim. Mat., 21, 51 (1999).
 
2. M.F.Galikhanov, A.K.Minnakhmetova, I.A.Zhigayeva et al., Int. Pol. Sci. Technol., 37, 59 (2010).
https://doi.org/10.1177/0307174X1003701109
 
3. M.L.Sherieva, G.B.Shustov, Z.L.Beslaneeva, Int. Pol. Sci. Technol., 35, 23 (2008).
https://doi.org/10.1177/0307174X0803501005
 
4. RU. Patent No. 2645677 (2018).
 
5. O.S.Shulga, A.I.Chornaya, L.Yu.Arseniieva, East Eur. J. Adv. Technol., 6, 36 (2016).
 
6. E.G.Krutko, N.R.Prokopchuk, A.I.Globa, The Technology of Biodegradable Polymeric Materials, Minsk (2014).
 
7. V.I.Korchagin, A.M.Surkova, A.V.Protasov et al., Fund. Res., 1, 12 (2018).
https://doi.org/10.17513/fr.42041
 
8. F.Shehzad, M.I.Ahmad, M.A.Al-Harthi, J. Appl. Polym. Sci., 135, 47 (2018).
 
9. M.C.Antunes, J.A.M.Agneli, A.S.Babetto, Polym. Test., 69, 182 (2018).
https://doi.org/10.1016/j.polymertesting.2018.05.008
 
10. A.U.Santhoskumar, N.J.Chitra, Chem. Methodol., 3, 83 (2019).
 
11. T.V.Dmitrieva, S.M.Kobylinskyi, V.V.Boiko et al., Polymer J., 37, 263 (2015).
https://doi.org/10.15407/polymerj.37.03.263
 
12. S.M.Kobylinskyi, T.V.Dmytrieva, S.V.Riabov et al., Ukr. Chem J., 11, 52 (2014).
 
13. T.V.Dmitrieva, V.I.Bortnytskyi, S.V.Riabov et al., Polymer J., 39, 3 (2017).
https://doi.org/10.15407/polymerj.39.03.183
 
14. M.Knitter, M.Dobzhinska-Mizera, Mekh. Komp. Mat., 51, 349 (2015).
https://doi.org/10.1007/s11029-015-9496-5
 
15. Z.L.Beslaneeva, M.L.Sherieva, N.I.Mashukov et al., Int. Pol. Sci. Technol., 38, 55 (2010)
https://doi.org/10.1177/0307174X1103801111
 
16. I.Yu.Ukhartseva, Int. Pol. Sci. Technol., 37, 59 (2009).
https://doi.org/10.1177/0307174X1003700913
 
17. S.K.Ozaki, M.B.B.Monteiro, H.Yano et al., Polym. Degrad. Stab., 87, 293 (2005)
https://doi.org/10.1016/j.polymdegradstab.2004.08.011
 
18. L.T.Sin, S.T.Bee, R.R.Ang et al., J. Polym. Eng., 35, 423 (2015).
https://doi.org/10.1515/polyeng-2014-0232
 

.

Current number: