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The inclusion of electron correlation into large-molecule calculations is particularly
vital for practical aspects of the Green’s function (GF) theory. In the present paper, simple
computational schemes of GF are given within the m-electron coupled cluster (CC) theory.
In particular, the conventional LCCD method is modified by introducing a renormalized
particle-hole correlation interaction, that lead us to a new more reliable scheme LCCD2. In
the latter, the correlation interaction matrix contains easily computable additional terms
which are quadratic in particle-hole amplitudes. The proposed models are tested for small
systems. Selected examples for sufficiently large conjugated networks of helicene, gra-
phene, and nanotube types are investigated by LCCD2 with a stress on long-range effects
describing interactions of far-distant m-electron sites.
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Cuopomeni o6unciaeHHsn T-edeKTPOHHOI rpuHiBcbKOl (PyHENil B cxemi 3B’a3aHuMX Kiaac-
TepiB. 3acTOCYBAHHA N0 CynpsKeHUX HaHOMOJEKyn. A.B.JIyzanos

Brurouenns edexTiB eleKTPOHHOI KOpeJssilil y po3paxyHKU BEJIUKHUX MOJEKYJ € IIPUHIY-
IMOBMM y NPaKTUYHUX BaCTOCYBaHHAX Teopil rpuuiBcbkoi @yurnii (GF). ¥V gamiit crarri
HagaHo ImpocTi cxemu oOumcaroBaHHA GF B mMemxax T-eleKTPOHHOI Teopii siB’ssammx KJjac-
TepiB (pMaJIiBoBaHOI YaCTUHKOBO-IiPKOBOI KOpeJdIlifiHol B3aeMoii, 1110 Beje A0 HOBOI OijbIn
"Hagifimoi cxemum LCCD2. B ocranHiii MaTpulld KopeadlifiHol B3aeMomAii MiCTUTBH HpPOCTO
00YMCITIOBaHI TONATKOBI UJIeHU, M0 € KBAAPATUYHUMH IIOJ0 YACTUHKOBO-AiPKOBUX aMILIi-
Tyn. SaIpoloHOBaHI Mogeji MpoTecToBaHO Ha MajJaux cucremax. 3a merogom LCCD2 go-
CJHIJKeHO OKpeMi MPUKJIAAU JOCUTHL BEJIUKUX CYNPAKEHUX CTPYKTYp 3a THUIOM TeJIUIleHA,
rpadeHa Ta HAHOTPYOKU 3 aKIEHTYBaHHAM Ha e(PeKTH JaJbHOIii, KOTpPi OMUCYIOTh B3aEMO/Iii0
BigajieHnX T-eJeKTPOHHUX IIeHTPiB.

Braouenue s(ppeKToB 9JeKTPOHHON KOpPPENAINU NpPU pacuyeTe GOJNBIINUX MOJEKYJ SBJ-
eTcs MPUHIIUIINAJBHBIM B IMPAKTUUECKUX NMPUMEHEeHUAX Teopuu rpuHoBckoil Gpyuknuu (GF).
B manHOi#l cTaTbhe maHBI NMPOCTHIe cXeMbl BblumciaeHuit GF B paMKax M-sJIeKTPOHHOII Teopuu
cBasaHubIX KJacTepoB (CC). B uactHOCTHM, MOAM(PUIIMPOBAHA CTAHAAPTHAd JUHEHHasd cxema
LCCD mpu moMoIly MepeHOPMUPOBAHHOI'O YACTUUHO-ILIPOUHOTO KOPPEJIAIIMOHHOTO B3aUMO-
IeificTBUSA, UTO IMPUBOAUT K HOBOII Oosiee Hame:xkHoit cxeme LCCD2. B mociegneit marpuiia
KOPPEeJANUNHOTO B3aMMOJENCTBUSA COLEPIKUT IIPOCTO BBIUUCIASAEMEIE JOTOJHUTEJIbHBIE
YjIeHbl, KBaJpaTUUYHbIEe 110 YACTUUHO-IBIPOUYHBEIM aMILIUTyAaM. [IpenjoskeHHBIe MOJeNU IIPO-
TEeCTUPOBAHBI Ha MaJbIx 3amauax. Ilo meroxy LCCD2 wucciegoBaHbI OTAeNbHBIE IPUMEpPBI
ITOBOJIBHO OOJIBIIIUX CONPSAMKEHHBIX CTPYKTYp THUIIa TejulleHa, rpadeHa W HAHOTPYOKHU C
aKIeHTOM Ha 3()(eKThl TaJbHOLEeUCTBUS, OIMUCHLIBAIOIINE B3aMMOJENCTBUE OTAAJEHHBIX TT-
JIEKTPOHHBIX I[€HTPOB.
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1. Introduction

Nowadays the theoretical principles of
single-molecule electronics (SME) are more
or less established (e.g., see [1-3]), and
main efforts are directed to specific molecu-
lar systems which may have potential in a
future nanoscale engineering. Recall that
the key tool for understanding electron
transport phenomena is the retarded one-
electron Green’s function (GF) theory. In
the case of the SME problems, computations
of molecular conductance are frequently
made by using GF at the DFT (density func-
tional theory) level. However, some princi-
pal deficiencies of DFT are reported in the
SME context [2, 4, 5]. Another popular ap-
proach is using the simplest tight-binding (TB)
model, or the Huckel method, for m-electron
subshells (see review [6]). The latter produce a
major contribution to the electron transport
through conjugated hydrocarbons and other
typical SME networks. Nonetheless, the full
ignorance of long-distance and electron corre-
lation effects make the TB approach too crude
and even erratic in many cases [7-9].

Recently we have proposed improved TB-
like schemes [7, 8] along with a more so-
phisticated model [9] which is based on the
well-known  half-projected Hartree-Fock
(HPHF) scheme. Nevertheless, for suffi-
ciently large networks it is desirable to ad-
ditionally compare results of the proposed
models with those from independent and
more reliable approximations. As for the
latter we adopt here the conventional elec-
tron-correlation models based on restricted
configuration interaction (CI) and related
couple cluster (CC) techniques. The main
purpose of this paper is to develop easily
workable CC schemes for calculating GF and
other electronic properties of complex n-
electron materials and compare the obtained
results with those previously given in [7-9].
Furthermore, here we are expanding the
scope of our studies to include three-dimen-
sional m-conjugated nanostructures as well.

2. One-electron TB-like models
for m-shells

To begin with, we will briefly sketch the
generic simple m-models we deal with in the
paper. In the notations adopted here the TB
(Huckel) Hamiltonian, ATB, of the given n-
conjugated system is fully determined by an
adjacency matrix of the associated molecu-
lar graph. We will work with the so-called
alternant hydrocarbons related to bipartite
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graphs. In this case all carbon 7m-sites can be
divided into two disjoint sets of, say,
starred and unstarred sites, and there are
no chemical bonds between the sites of the
same set.

The adjacency matrix of bipartite graph
can be always written as a skew-diagonal
block matrix. Accordingly, the conventional
representation of is of the form

LTB — _( L;)T lg) (1)

where block B is constructed from 1’s for
adjacent sites (bonded carbon atoms); other
elements are 0’s. This Hamiltonian is given
here in units of the effective resonance integral
Bepr [7]. The attractive feature of TB is the
easiness with which one performs computations
of the corresponding retarded Green’s function
matrix Gng at the Fermi level. Namely, GgB is

the resolvent matrix for Eq. (1):
GIB = [(0"I — RTBIL, (2)

where i0" is an imaginary positive infini-
tesimal, and I the unity matrix.

To overcome the shortage of the TB ap-
proximation for GF, a rather elementary
modification of TB was invoked in [8]. In
this modification termed EQC (extended
quasi-correlated) model, the different orbi-
tals for different spins are introduced in a
very simple way. When describing GF and
molecular conductance, EQC demonstrates a
clear superiority over our previous quasi-
correlated TB (QCTB) model from [7] (and
over TB, of course).

In works [7—9], the full CI (FCI) method
for m-electrons was employed as the natural
reference method when evaluating the accu-
racy of QCTB and EQC approximations for
GF and density matrix in small-size sys-
tems. In the case of middle-size systems
(where FCI is not accessible) we have ap-
plied the sufficiently accurate HPHF
scheme mentioned in the introduction. By
HPHF we could check reliability of the sim-
ple theories, QCTB and TB, for quite com-
plex structures with a score and more atoms
which are beyond the computational accessi-
bility of FCI. And yet, for sufficiently large
systems (say, more then fifty atoms) the
HPHF computations may be less reliable as
a consequence of size-inconsistency inherent
to the HPHF model. This fact motivated us
to explore another techniques based on the
good-quality CC models which we consider
below.
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3. Using Koopmans-like
approximation for CC models

There exist many good quality models
based the second-order many-body perturba-
tion (MP2) [10] and more sophisticated CC
theories given in [11-13] (see also [14] and
Refs. therein). Besides, within the CC the-
ory a simple, reasonable approach can be
developed by modeling molecular ionization
potentials (IP) and electron affinities (EA)
via an appropriate Koopmans’s approxima-
tion (in fact, the frozen-core model) [15]. As
we will show further later in the paper, the
ensuing m-electron Green’s functions at a
generalized Koopmans level of theory are
also of good quality, and this fact is one of
the main results of our study here.

The approach we use is based on [15]
where approximate m-electron CC calcula-
tions of IP were offered for singlet ground
states of small conjugated hydrocarbons.
Throughout the paper the total number of
n-electrons is N, with N being even. Follow-
ing [15], let us restrict to the conventional
CCD model, that is CC with double-orbital
substitutions (i.e., double excitations only).
In this approximation one constructs the
Koopmans-like Hermitian operator, f(1,
which determines the IP spectrum within a
frozen-core CCD level. This f(P (fKoop in
terms of [15]) acts in the subspace of spin-
free occupied MOs |i) (1<i<N/2) with orbital
energies ¢ (as usual, the Hartree-Fock
ones). The f(Y) matrix elements are of the
easily computable form:

fgr) = £;8;; + M (3)
where
oce vac “
wip = Y Dtav, ik {2(iklglab)y — (kilglab)],

k ab

and g is the two-electron Coulomb repulsion
operator. Moreover, in Eq. (4) the standard
notation ¢y, ;; is used for the CCD particle-
hole amplitudes related to double excitations.

The required IP spectrum {I, };.,v, is
identified with a set of eigenvalues of ma-
trix - f+=||_f{§00p”15i,jSN/2- The eigenvec-

tors {O|d§]f))}1£ugzv/2 of this matrix correspond

to the so-called one-electron Dyson orbitals.
As a result, the GF "positive” (i.e., hole)

part, G, is constructed from these eigen-
vectors, as follows:
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G <ai) ©)
ot +1,

G =3

1<u<N/2

In fact, the above given expressions can
be considered as a specific approximation to
EOM (equation-of motion) CCD model for IP
or more general IP-EOM-CCSD, that is the
EOM-CC theory that involves both single
(taj) and double (tab,jk) excitation ampli-
tudes. More exactly, to obtain term w%}r), Eq.
(4), one must neglect by 2hp amplitudes in
the corresponding EOM-CC equation (8)
from [12].

In a like manner we treat the GF "nega-

tive" (i.e., particle) part, G§), that is closely

related to the molecular EA spectrum. Let
us define the appropriate matrix f() whose
eigenvalues {A,};</<, determine the EA
spectrum (m denotes a total number of vir-
tual orbitals). The f() matrix elements are
of the form

F8 = €adap + M’ v
where
oce vac )
WG ==Y Ytaen [2Ckllglbc) — (klglbc)).

i,j ¢
Then GE)_) is computed from the f() spec-
trum, as follows:

N () ¢
-y M
i0t-A
1<v<m v
with the relevant Dyson orbitals

{ld$7)} 1 <y<m being a set of the m eigenvec-
tors of f(). Eq. (7) for wgl_b) corresponds again
to the usual EOM-CCD theory where one must
neglect by 2ph amplitudes occurring, say, in

Eqg. (8) from [12]. Evidently, the full GF at
the Fermi energy should be equal to

Gy = G§) + G§). 9)

At this point, we would like to make one
helpful observation concerning alternant m-
systems (see Section 2 above). If one is in-
teresting in GF at the Fermi level only, i.e.

Gy, there is no need in computing G§) for
alternants because any correct m-model of
Gy, Eq. (9), must obey an alternant symme-
try requirement [16]. The last states that
Gy has the same skew-diagonal block form
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as hTB in Eq. (1). Then, nonzero matrix ele-
ments of G between m-orbitals of starred
and unstarred sites are determined solely by

the corresponding G§) elements. It is essen-

tial that, when calculating G;, the IP and
EA spectra in Eqgs. (5) and (8) are shifted by
the Fermi energy.

4. Further simplifications and
modifications

When dealing with large-scale computa-
tions, it is necessary to employ as simple as
possible techniques that produce double ex-
citation amplitudes ¢, ;. Indeed, owing to a
poor algorithmic scaling of typical high-
order CC approaches, the latter frequently
become impractical to treat large-scale sys-
tems even within semiempirical m-schemes
[17]. Only within the MP2 theory we can
apply a quite elementary expression:

t%l”j% = (ab|g|jk>/(ej +g,—¢g,—g), (10)

and this MP2 option for constructing G,
was applied long ago (e.g., see [12] and
Refs. therein).

In principle, the well-known linearized
CCD (LCCD) method, being quite feasible to
run large-scale problems on inexpensive
computers, offers better results than in
MP2, and this approach will largely occupy
us in the present paper. However, as a rule
the LCCD and related LCCSD methods
(when amplitudes t,j are additionally in-
cluded) overestimate m-electron correlation
effects markedly (e.g. see Table 8 in [18]).
This drawback can be weakened by one sim-
ple modification which we propose below.

Recall that the LCCD equations for dou-
ble excitations amplitudes can be symboli-
cally written as an operator relation for the
4-index amplitude matrix

t= ||tab,jk||a (11)

namely,

2y + g, = 0. (12)

Here, 11121 is a superoperator acting in a
space of ¢-type matrices (see [19] for detail),
and

Seorr = [(ablglik)|. (13)

In fact, a spectrum of IT2] gives two-
electron excitation energies within the CID
scheme (CI with double orbital substitu-
tions). Analyzing a two-electron problem in
these terms, as done in the Appendix to this
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paper, we arrive to an unsophisticatedly ex-
tended LCCD model, namely the new scheme
LCCD2. This approximation takes the form
of the above Egs. (11)—(18) with a simple
nonlinear correction to g.,,., as follows:

ni2ke) + g¢) =0, (14)
ggto)rr =8corr ~ tgt (15)

(Eq. (A6) in the Appendix). Stress that
LCCD2 cannot be gained directly from the
full CCD method. In the latter one finds,
among many other terms, the quadratic con-
tribution tgt, but with opposite (positive)
sign. It is also clearly that we can use am-
plitudes (11) taken at the above LCCD2
level of theory to produce, via the basic
Egs. (3)—(8), Koopmans-like estimations of
GF matrix (9). The GF matrix thus obtained
will be denoted by G%‘CCDz.

In addition to LCCD2, we suggest a more
elementary version of the LCCD-like theory
with using a modified approach to g.,,... In
this approach, that will be termed the

LCCDm method, we take a fixed g{)., which

cor
is now independent of ¢. Namely, during the

iterations for solving Eq. (14), gt

corr
puted from double excitations amplitudes at
the MP2 level:

is com-

gg'to)rr =8corr— tMPthMPZ (16)
(tMP2 matrix from Eq. (10)). In this case the
computations become more easily to be per-
formed owing to linearity of Eq. (14) in re-
spect to £, and the needed iterations tend to
be more easily converged.

Now we preliminarily demonstrate that
the above schemes work well for generic
n-electron systems. In our calculations we
use for all conjugated m-systems the stand-
ard model geometry (regular squares and
hexagons) and conventional m-electron pa-
rameters (the C—C bond resonance integral
Bo = —2.4 eV, two-electron Coulomb repul-
sion integrals ”Yuv” due to Ohno ete.). As in
[7], the effective resonance integral is taken
to be B,rr = Bo — V12/2, where y;5 is the Cou-
lomb repulsion integral for m-AOs in the
C-C mn-bond; B, =—-6.17656 eV in the
adopted m-parameterzation scheme.

To assess the quality of models, we study
the small-size representative structures
given in Fig. 1. In the case of quinoid mole-
cules 6 and 7 (cyclic systems with one

Functional materials, 28, 2, 2021
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Fig. 1. Small conjugated molecules for testing CCD
studied contact pairs (¥, O).

Kekule structure) we employ alternating
resonance integrals in the same manner as
in [7].

With the above examples, we consider
LCCD2 and other models in comparison with
FCI. Recall that the latter is conventionally

treated as the exact reference standard in

the many-electron context. A suitable accu-
racy measure of electron-correlation models
is usually defined in terms of the correla-
tion energy, €., per electron, that is, the
specific correlation energy €., = €uopr/N. A

close proximity of the given Ecorr to that of
eFCl provides a natural validity test of

the given method. In Table 1, we collect

relevant results for Ecorr in the m-systems of

Fig. 1. We see that for all the systems of
Fig. 1 our LCCD2 scheme is the most closest
to the exact (FCI) n-theory. Along with this

Table 1. Specific m-electron correlation en-
ergy Ecorr (in eV) for conjugated hydrocar-
bons in various many-body theories. Bold-
font integers refer to the calculated struc-
tures from Fig. 1

No | CCD LCCD |LCCDm | LCCD2 | FCI

0.1362 | 0.1433 | 0.1417 | 0.1409 |0.1409

0.1296 | 0.1348 | 0.1333 | 0.1331 |0.1336

0.1336 | 0.1888 | 0.1373 | 0.1871 |0.1374

0.1460 | 0.1546 | 0.1530 | 0.1510 |0.1506

0.1502 | 0.1639 | 0.1621 | 0.1581 |0.1550

0.1652 | 0.1833 |0. 1819]0.1747 |0.1733

q (O (O (W N e

0.1641 | 0.1848 | 0.1833 | 0.1753 | 0.1735
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n-models. Asterisks and circles point out to the

we notice that the LCCD2 computations by
Egs. (14) and (15) are in fact no more diffi-
cult than those in the LCCD case. Simulta-
neously, LCCD2 and LCCDm are much sim-
pler than the conventional CCD method; the

last, besides, underestimates ¢,,,, rather

markedly.

5. Accuracy of approximale
Green’s functions for small
T-systems

In this section we return to GF and re-
port the numerical results for assessing ac-
curacy of the Koopmans-like estimations for
GF matrices in CCD and the new schemes
LCCDm and LCCD2. To this end, we use a
suitable statistical measure in the form of
the relative (in respect to FCI) square-mean
error (fluctuation), s;. We supply this sg
with an additional upper affix, X, to distin-
guish the errors for different models. Ex-
plicitly, sé is defined as follows:

leE - G5
legen -

17
- (17)

where X specifies the used method, and || ||
symbolizes taking Euclidean matrix norm.
In Table 2 we present the obtained error
data for X =TB, EQC, CCD, LCCDm and
LCCD2. Note that as previously in [7-9],
G§ for all X is expressed in units of 1/B,s

From Table 2 we conclude that as a rule
the EQC model of [8] turns out to be only
slightly less accurate than the CC models
(nothing to say about excessively crude TB
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Table 2. Relative GF error sé, Eq. (17), for
various m-electron theories; X = TB, EQC,
CCD, LCCD2 and LCCDm). Bold-font inte-
gers refer to the calculated structures
from Fig. 1

Table 3. The GF matrix elements Gfar at
the various theoretical levels. Bold-font in-
tegers refer to the calculated structures
from Fig. 1 where the far contact sites are

No TB EQC CCD |LCCDm | LCCD2
1 0.396 | 0.064 | 0.028 | 0.029 | 0.028
2 0.210 | 0.068 | 0.026 | 0.027 | 0.027
3 0.384 | 0.064 | 0.030 | 0.032 | 0.032
4 0.670 | 0.052 | 0.046 | 0.046 | 0.046
5 2.5613 | 0.056 | 0.062 | 0.052 | 0.056
6 0.975 | 0.089 | 0.136 | 0.122 | 0.127
7 1.254 | 0.105 | 0.176 | 0.155 | 0.163

shown
No TB EQC CCD |LCCDm | LCCD2
1 0.396 | 0.064 | 0.028 | 0.029 | 0.028
2 0.210 | 0.068 | 0.026 | 0.027 | 0.027
3 0.384 | 0.064 | 0.030 | 0.032 | 0.032
4 0.670 | 0.052 | 0.046 | 0.046 | 0.046
5 2.513 | 0.056 | 0.062 | 0.052 | 0.056
6 0.975 | 0.089 | 0.136 | 0.122 | 0.127
7 1.254 | 0.105 | 0.176 | 0.155 | 0.163

approach). Moreover, from Table 2 it ap-
pears that in fact LCCDm and LCCD2 give
almost the same good results as the more
consistent CCD approach. For strongly elec-
tron-correlated systems such as 5+7,
LCCDm is even a bit better. At the same
time, one should not forget the well-known
fact that wunsophisticated CC methods
(LCCD, CCD, and similar class theories) as
based on the single-determinant reference
state, cannot be fully consistent for the sys-
tems with sufficiently strong electron corre-
lation effects (e.g., large quinoid structures
are just of this type).

Additional useful details can be provided
by comparison between the selected matrix
elements of GF computed at the different
theoretical levels. Quite interesting is the
case of the GF elements assigned to far-
thest-distance sites, say W and v (the sites
are shown explicitly in Fig. 1). The respec-
tive GF elements (Go)uv will be denoted by
Gfor- The Gy, values are displayed in
Table 3. The latter shows that Gy in the
CC schemes, as well as in EQC, are suffi-
ciently close to the FCI results. Only the TB
values of Gy, are unreliable, especially for
quinoid systems 6 and 7.

6. Green’s functions for some
conjugated nanostructures

In this section, some results of the =-
electron GF computations for sufficiently
large conjugated graphene-like molecules
are reported. We start with several struec-
tures of the previously studied [n]periacene
systems [8, 9]. Here we consider the perian-
thracene molecules which are depicted on
Fig. 2 with pointing out the most important
para-type contact pairs. The numerical results
for [n]perianthracene structures (Table 4)
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L 1 n-1

Fig. 2. Structure and the para far-distance
contact pair (p,p’) for [n]perianthracene.

demonstrate that GF values for the para
contacts behave consistently, showing de-
crease of (—G%()p,p/ with distance between

sites p and p’. Only the TB model displays

an opposite (unnatural) length dependence.
It is worth noting that, as seen from

Table 4, our simplified CC schemes provide
the numerical results that are sufficiently
close to the CCD ones. This fact allows us to
apply LCCDm and LCCD2 for obtaining =-
electron GF with certainty, but of course with
stipulating that the standard single reference
CC theory is correct in principle for the sys-
tem under study. As usual, medium-size gra-

Table4. Comparison of the para m-electron
GF elements (—G%()p’ , in [n]perianthracene
(n=1+3) for X=TB, HPHF, EQC, CCD,
LCCDm, and LCCD2

n TB |HPHF| EQC | CCD [LCCDmLCCD2

1.000 | 0.626 | 0.587 | 0.620 | 0.614 | 0.615
2 |1.500|0.387|0.366 | 0.368 | 0.345 | 0.350
2.500 | 0.243 | 0.285 | 0.294 | 0.235 | 0.255

Functional materials, 28, 2, 2021
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Table 5. Comparison of the far-distance GF elements (G())()p’p, for X = TB, HPHF, EQC, LCCDm, and

LCCD2 in GQD-56 and GQD-62

@p) TB HPHF EQC LCCD2 LCCDm
P.,pH) -2.619 | 0246 -0.399 -0.363 -0.404
(p.p2) 2381 0.131 | 0.283 0.252 0.292
.p3) -0.921 -0.036 | -0.125 -0.152 -0.126
(1,17) 1 -0.292  -0.051 -0.044 0.038 0.038
2,2y  -0921 -0.155  -0.125 -0.108 -0.108
3,3)  -0615 -0.098 -0.084 -0.070 -0.070

phene molecules having not too small or-
bital gap are of this structural class.

We now further study two graphene
quantum dots GQD-56 and GQD-62 from [9]
as additional examples of m-electron nano-
systems with rather strong electron correla-
tion effects. The respective data for the
most important far-distance elements of GF
are collected in Table 5. First, one can im-
mediately notice that again TB gives quan-
titatively and sometimes even qualitatively
erroneous results. More important for our
present purposes, there is a close proximity
between the LCCDm, LCCD2, and EQC val-
ues of far-distant (more sensitive) GF ma-
trix elements (see also Table 6). It indicates
that the EQC method as being incomparably
more simple in practice, can be more or less
safely extended to large-size m-electron struc-
tures for which the standard CCD and even
LCCD are actually not feasible. As to HPHF,
we cannot recommend its application to too
large-scale systems because of lacking size-
consistency and violating spin conservation in
this model.

7. Conclusion

In this work, the approximate computa-
tional techniques are proposed for ground-
state properties of many-electron m-systems
in sufficiently large conjugated molecules.
The stress is laid on a good account for
n-electron correlation effects needed for
considering one-electron Green functions of
carbon containing nano-sized structures.
Our modified CC m-models present a good
basis for producing GF matrices that were
computed here in a simple (Koopmans-like)
and quite efficient technique. The new ap-
proximations, LCCD2 and LCCDm, show a
good performance, and as a rule they can be
recommended for practical applications.

Particularly, the given models allowed us
to evaluate the wvalidity of the previously

Functional materials, 28, 2, 2021

proposed EQC scheme [8] for medium-size
molecular systems. Based on this, we sug-
gest that EQC (which is especially simple in
its nature) provides a reasonable description
of far-distance GF matrix elements in large
conjugated networks. At the same time, the
traditional CC theories on which we mainly
relied in this study, are not quite infallible
for strongly correlated m-systems. In such
difficult cases, more specialized approaches
should be used, such as the Brueckner cou-
pled cluster theory [13] or spin-flip CC
methods [20]. It seems most likely that
these advanced CC methods might be a
promising area of further researches in mo-
lecular electronics.

At last, the present work can be readily
extended to the LCCSD-type models as being
closely related to the starting model LCCD.
Indeed, for molecules with closed shell
ground states, a contribution of single exci-
tations has an insignificant influence on
most of electronic properties, and we can
modify LCCSD in the same fashion as in the
case of LCCD. It means that in the corre-
sponding LCCSD equations, the modified

correlation potential g() . Eq. (15), can be

corr?
directly used instead of the initial standard
Zeorr- Preliminary numerical experiments
confirm this assumption. Notice that ac-

counting for single excitations, all the
same, improves the description of some
electronic characteristics, e. g., electric

properties, and this issue requires more
work and careful consideration in future re-
searches.

Appendix: Quadratic correction
to LCCD equations

The simple quadratic correction, Eq.
(15), to LCCD can be set up heuristically,
following partially the ideas from the pre-
vious study in Section C of [21] and in [22].
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Table 6. Comparison of the far-distance GF elements (G{)()p,p, for X = TB, HPHF, EQC, and LCCDm

in dodecahelicene and in short (C,;) armchair carbon nanotube CNT (5,0). The m-sites in contact
pairs of three distinct types are connected by red, green and blue dashed lines

System contacts B HPHF EQC LCCD2
red -0.104  -0.044 -0.051 | -0.038
green 0.146 0.051  0.061 0.042
blue -0.276  -0.124  -0.145 | -0.109
red 0.188 0.052  0.051 0.041
blue -0.085  -0.062 -0.064 | -0.055

Let us shortly analyze the CCD solution for
a two-electron system in two-orbital mini-
mal basis. In this case the CCD solution is
equivalent to the FCI solution, as well as to
the CID one (a singly excited configuration
can by safely neglected). Then the total nor-
malized two-electron function |¥(1,2)| can be
presented by the two-term expansion as fol-
lows:

[¥(1,2)) = (@) + tJD.)) /N1 + 2, (A1)

where |®) is the corresponding Slater deter-

figuration, with coefficient ¢. being a varia-
tional parameter.

Take into account that the CID eigen-
value problem allows to be given in the su-
peroperator terms similar to those of the
LCCD equation (12). Explicitly,

T2XE) + goprr = Ecomts (A2)

where the eigenvalue (electron correlation
energy)

€eorr = Tr(Georp)tt = Trgt.

corr —

(A3)

The CID equations (A2) and (A3) are exact
for the above |¥(1,2)) since they are equiva-
lent to the FCI ones. More generally, ex-

change terms should be included in ¢, but

they are immaterial for our purpose here.
We now come back to wave function (Al)
for which, in concordance with Eq. (53) in
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[22], the ¢t matrix is equivalent to the rank-
one operator

In the same manner, g.,,., Eq. (138), takes
the similar rank-one dyadic form, that is,
&eorr 18 of the form of Eq. (A4) where ¢, is
to be replaced with the relevant element,
say g« Then, from Eq. (A3) we have ¢

corr
t.8.. Likewise, IT2l(#) = 1., where A, is a
double-excitation energy for transition
|®) — |®,.). When combined with Eq. (A2),
the above relations lead to the scalar equa-
tion for parameter t.:

}\'*t* + 8, — 1.8t = 0, (A5)

which produces the known solution to the
FCI two-electron problem in the minimal
basis:

te= M/ — V4 + (M/80%)/ 2,

€

(A, — VA2 + 4g2)/2.

In operator terms Eq. (A5) is but

corr =

n2kt) + g, — tgt =0 (A6)
for the current two-electron problem. The
last step we do is merely making a straight-
forward extension of this rank-one operator
equation to a general case of arbitrary mo-
lecular system in its singlet ground state,
and it gives us the resulting Eqgs. (14) and

Functional materials, 28, 2, 2021
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(15). This is the proposed LCCD2 approxi-
mation. The intuitive grounds for such ex-
tension can be found in a rather bona-fide
electron pair models of the APSG (antisym-
metrized product of strongly orthogonal
geminals) quality; see also extension of
APSG in [28, 24]). In this case the total
many-electron function can be thought as
being made of actually independent two-
electron functions, and for each of them we
can apply own equation of type (A6). In
other words, due the size consistency of
Eqgs. (14) and (15) we produce a correct
APSG limit when splitting the total closed-
shell wave function into a product of wave
functions of two-electron fragments. In par-
ticular, if a conjugated molecule fully disso-
ciates into isolated ethylene-like fragments,
Egs. (14) and (15) lead to correct m-results
of the FCI quality.

The specific computations of ¢,,,..

tion 4 show good results for typical small
(N<14) n-systems treated at the LCCD2 level
(see Table 1 in Section 4). For larger N’s,
there is a simple possibility to compare the
approximate €., correlation energies with
those of the FCI method if we make using the
Hubbard Hamiltonian, as done in [18, 25]. In
particular, one can extract the needed data
from Table 8 in [18], taking, say, the C-C
bond resonance integral By = —3 eV, and the
one-center Coulomb integral v, =15 eV.
With these mwn-parameters for the cyclic

polyene C gH.g we have the following Ecorr

values at the FCI, LCCD2, LCCD and CCD
levels (all quantities in eV): —0.1446, -
0.1455, —-0.1480, —-0.1431. Analogous data
for CogHys are as follows: —-0.1450, -
0.1459, -0.1485, —0.1431.

in Sec-
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