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A Fourier analysis of the anisotropy of the elastic properties of the crystallographic
planes of hexagonal crystals, given by their angle of inclination to the isotropic plane of
the basis (0001), is carried out. It was found that the anisotropy of Young’s modulus_of
titanium for all planes is monotonic with a minimum in [1010] and a maximum in [1010]
+ /2. For the zirconium and magnesium crystallographic planes forming an angle oz0
with the (0001) plane, the values of E take the minimum in the direction [1010] + =/4,
and the maximum — in [1010] + n/2. We used the dynamic method to study the anisot-
ropy of E for annealed and tensile-deformed titanium samples cut from sheets at different
angles to the rolling direction (RD) and estimated the level of integral damage (D) of
deformed samples (strips) relative to undeformed ones. The anisotropy of D is similar to
the anisotropy of Ej; it is approximated by a Fourier series with harmonic amplitudes A, =
1.38, Ay = —0.99, A, = —0.2 %. Prevailing influence of A, in the anisotropy of D indicates
damage as a property of the second tensor dimension. This is expressed in the charac-
teristic shape of pores in the form of ellipsoids, which are observed on microstructures.

Keywords: hexagonal crystal, Young and shear moduli, Fourier analysis, titanium,
zirconium, magnesium, damage, pores.

AHizoTpomia Npy:KHUX MOAYJIB IUIOIMIUH IeKCATOHAJHHOTO KPHCTAJa Ta MOINKOMKEeHHS
THTaHOBHUX JuctiB. H A Bonwowx, A JJ.Kay6ic, AIl.Haves, A.D.Tapacos, I'.I'epuimeiin
ITpoBeneno @Dyp’e-aHaris aHidoTpomii IPYKHUX BJIACTUBOCTEH KpucTagorpadiyHuUX ILIO-
IIIUH TeKCaroHaJbHUX KPHUCTAJIiB, 3aJaHUX KYTOM HAXWUJIY iX MO i30TPOMHOI IJIOIIUHI O6asucy
(0001). Orpumano, mo axizorponis Mozyna IOura (E) Turany AJd BCiX IJIOIIMH HOCUTH
MOHOTOHHU# xapakTep 3 Mimimymom B [1010] i makcumymom B [1010] + n/2. Minmimanshi
sHaYeHHA E 1A MJIOMMH KPHCTATiB MUPKOHIIO i MarHiio, 1o yTBOPIOIOTL KYT 3 IJIOIIMHOIO
(0001), nmpuiimae B Hanpamiky [1010] + m/4, a maxkcumanbHi — B [1010] + n/2. Busueno
amisorpomito E BigmameHux i medopMoBaHHMX POITATryBAHHSM 3pas3KiB TuTaHy, BUPidaHUX 3
guctiB mig pisuuMu Kyramm no Hanpamky nporarku (HII), mumamiunum metomom i omineno
piBenp imTerpaspHoro mnomkomKeHHs (D) medopmoBaHMX 3paskKiB momo HexedOPMOBAHUX.
Amnisorponisa D noxi6ua amisorpormii E, anpokcumyerbesa pagzom @Pyp’e 3 aMIuIiTyzamMu rap-
moHiK Ay = 1.38, Ay, =-0.99, A, = -0.2 %. Ilepesamatounii Bunius A, Ha amizorpomito D
TOBOPUTH IIPO IIOMIKOJKEHHS SIK IIPO BJACTUBICTH APYyroi TeHsopHol poamipnocti. Ile Bupa-
JKaeThCA y XapakTepHi ¢opmi mip y Burasai emimcoigiB, sKi cmocrepiraioTbcs HA MiKpO-
CTPYKTypax.
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TIpoBemen @ypbe-aHAIN3 AHUSOTPOIUY YIPYTUX CBOMCTB KPHUCTAINIOTrPA(UUECKUX ILIOC-
KOCTell reKcaroHaJbHBIX KPHUCTAJJIOB, 3aJaHHBIX YIJIOM HAKJIOHA WX K M30TPOITHOM IJIOCKOC-
tu 6asuca (0001). IToryueno,uto anusoTponusa mMoxyaa IOura (E) TuTana Ajd BeeX IJIOCKOC-
Tell HOCUT MOHOTOHHBIHM XapakTep ¢ MuHUMyMoM B [1010] m maxcumymom B [1010] + ®/2.
MunumaibHbIe 3HaUeHUA E 118 IJI0CKOCTel KPUCTANIOB NMPKOHUSA ¥ MAarHus, o0pasyromux
yrox 0#0 ¢ mrockocreo (0001), mpurumaer B manpasiernu [1010] + ©/4, a MmakcuManbHEIE
— B [1010] + ©n/2. Usyuanu aHM30TPONHUIO E OTOMIKEHHBIX U Ne(OPMUPOBAHHBIX PACTSIKE-
HUeM 00pasliOB TUTAHA, BHIPESAHHBLIX W3 JIUCTOB IIOJ PA3JUYHBIMM YIrJaMUu K HAIPaBJIEHWIO
nporkarku (HII), suHAMUUYECKUM METOJOM U OLIEHWJIUM YPOBEHb MHTErPANLHON MOBPEIKIeHHOC-
1 (D) medOpMUPOBAHHBIX OGPASI[0OB OTHOCUTEJIbHO HeZeOPMUPOBAHHBIX. AHusorponus D
mopo6ua anusoTponuu E, annmpokcuMupyercsa pasoM Pyphe ¢ aMINIUTYAaMK MAPMOHUK A, =
1.88, A, =-0.99, A, = -0.2 %. IlpeBanupyiomee BIuAHNEe A, Ha aHU3OTPOIHMIO D roOBOPHUT
0 TIOBPEJKIEHHOCTH KaK O CBOMCTBE BTOPOU TEH30PHOW pasMepHOCTHU. OTO BHIPpAKAETCSI B
XapakTepHoO#l ¢opMe MOpP B BHUE 9JIJIUICOULOB, KOTOPLIE HAGIIOAAIOTCI HA MUKPOCTPYKTY-

pax.

1.Introduction

Polycrystals have anisotropy of proper-
ties, which is determined by the orienta-
tional distribution of its individual ele-
ments (texture) and the anisotropy of the
elements themselves, which are single crys-
tals with a high degree of approximation.
The general approach to specifying textures
is to represent them in the form of three-di-
mensional orientation distribution functions
(ODF) of polycrystal elements [1]. Methods for
reconstructing ODF from experimental data
are complex, require a large amount of pri-
mary information, and ODFs themselves con-
tain redundant information in terms of the
anisotropy of the properties of polycrystals.

The texture of cubic polyerystals with
external symmetry elements (rolling direc-
tion, dragging axis, etc.) can be conven-
iently described in two-dimensional repre-
sentation using ideal orientations (I0). In
this case, the characteristics of the texture
are: the crystallographic plane of individual
crystals {hkl}, which coincides with the roll-
ing plane; the crystallographic direction
<uvw>, which coincides with the rolling di-
rection (RD) or the transverse direction
(TD) or the direction normal to the sheet
plane (ND) [2]. The anisotropy of the prop-
erties of a polycrystal is determined by the
relative content of the IO in the texture and
the anisotropy of the properties of the ideal
orientation itself.

In [3], the anisotropy of Young’s modu-
lus (E) in the crystallographic planes of the
main ideal orientations of the textures of
o-iron sheets was studied. The dependences
of E on the direction of measurements, the
anisotropy coefficients and average values
of E in various IO of textures of annealing
and rolling of o-iron were obtained.
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Hexagonal crystals are substantially an-
isotropic not only in relation to the proper-
ties of the fourth tensor dimension
(Young’s and shear modules, Poisson’s
ratio), but also in relation to the properties
described by second-rank tensors (thermal
conductivity, electrical conductivity, ther-
mal expansion, etc.) [4]. Due to the
uniaxiality of the hexagonal crystal, the
crystallographic planes of I0 are convenient
to set not by Miller indices, but by the
angle o — their inclination to any of the
principal planes, for example, the basis
plane (0001). The direction is given by the
angle ¢ relative to the direction [1010].

The anisotropy of the properties of each
of the IO in a real polycrystal is determined
not only by the tensor dimension of the
property itself, but also by the influence of
the real structure with all its features and
can serve as a basis for separating the con-
tribution to the real anisotropy of the crys-
tallographic and defect components of the
texture, when assessing the level of struc-
tural defectiveness at the meso and mi-
crolevels [5]. For viscoelastic materials,
such properties are the elastic properties of
the fourth tensor dimension, which are pre-
ferred in methods for assessing the level of
integral damage under various types of ex-
ternal influences on them.

The purpose of this work is to study an-

isotropy of elastic properties of the basic
ideal orientations of textures in hexagonal
metals with the ratio of the axes ¢/a<1.63
and to determine the possibility of taking
into account the contribution of texture in
assessing the damage level of annealed and
deformed titanium.
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2. Anisoiropy of the properiies
of crystallographic planes in a
hexagonal crystal

The position of the crystal plane (Akil) is
determined by the angle o of its inclination
to the basal plane (0001). Let’s introduce
two coordinate systems x; and x; with a
common origin at point 0 (Fig. 1). The basal
plane lies in the coordinate plane Ox;x,xj,
and the [0001] axis coincides with the Oxg
axis. The plane (hkil) lies in the 0x;'xy’
plane. In the plane (hkil), choose an arbi-
trary direction ON and denote by ¢ the
angle between it and the axis 0x;".
Let’s find the dependences of the properties
of the fourth tensor dimension of Young’s
(E) and shear (G) moduli on ¢ for different
angles o, which determine the position of
the (hkil) plane in the crystal.

From the spherical triangle ZBN we get:

cosO = cos(90" — a)cos(90° — ) (1)
or for an arbitrary direction lying in the
plane (hkil):

cosB = sinosineg.

We use the well-known expressions for
the dependence of the elastic moduli on the
direction in a hexagonal single crystal [4]:

1 2
T =511~ (2811 — 544 — 2519)08) + @
+ (511 + 833 — 844 — 2513)03],
1 1
G- Saat (311 ~ 812~ 5344)"‘

1 2
- (311 -s- 2344)10‘31 -
— 2511 + S33 — S44 — 28130041

We represent the last expressions in the
form:

% =811~ asin2(xsin2(p + bsin40csin4(p, (4)
1_ (5)
G-
=844 + ¢ + (20 — ¢)sin?asin?e - 2bsintosinte ,
where
a =281y — 844 — 2813, (6)
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Fig. 1. To the derivation of the anisotropy of
the elastic modules in the planes of a hexago-
nal crystal.

b =811+ 833~ 844~ 213 (D
)

1
€ =311+ 812~ 5544

where s;; are components of the compliance
tensor, E, G are Young’s and shear moduli,

angle ¢ is measured from the direction
[1010].
Further

2sinZp = 1 — cos20,

and

. 3 1 1
4o =2 —
sin®p = ¢ 2cos2(p + 8cos4(p.

After substituting the obtained expres-
sions into (4) and (5), we get:

1_. _a.9 3, .4
E—sll 2s1n 0c+8bs1n o+

2 8 8

=844+ ¢+ (2b - ¢)sin0(1 — cos2¢) +

. 3 1 1
462 _ = =
+ 2bsin 0{8 2cos2(p + 2cos4(p}

After simplifications, we get:

a . 3, . b .
+ | =sino + —bs1n4oc):os2(p + gsintocosdq,

G

E1 = Ay + Aycos2¢ + A cosdo, 9)

G71 = By + Bycos2¢ + Bycosdo, (10)
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Table 1. Compliance constants of hexagonal metals

Crystal c/a Compliance constants of single crystals and their combinations, x1011m2/N
511 S12 Sa4 S33 513 a b ¢
Titanium |1.591664| 0.9581 | -0.4623 | 2.1413 | 0.6979 | —0.189 | 0.1534 | —0.106 |-0.57485
Zirconia [1.586121| 1.0122 | -0.4041| 3.125 0.7977 -0.24 -0.618 | —0.833 | —0.9544
Magnesium [1.619938| 2.2138 | -0.7711 | 6.0241 | 1.9748 | —0.491 | -0.612 | -0.851 |-1.56935
where o 1 . §c
11— 33
e Lo 3 ey —erd)
Ay=811— gasin o+ gbsin‘o, (11) ) —§c B 1
12=9%8 " 5
(€11~ ¢12)
A _l in2 lb ind
2 = 5asInTo — 5 0sintaL, (12) 833 =S5 - (¢ +¢12)s $13=—S - Cq3,
1 1
Sga=7 > S= —9¢2."
1, . 4 44 (c11 + €19)c33 — 2613
A= gbsm o, (13)
Using the values of the compliance con-
stants and their combinations (Table 1),
By = 844 + ¢ + (2b — ¢)sinZa. — bsinta, from (11)—(16),we calculated the amplitudes
(14)  of the harmonics of the Fourier series of
anisotropy 1/E(@) for the hexagonal crystal
- 4 planes depending on the angle of their inecli-
By = —(2b — ¢)sin“o — bsin®o, (15) nation to the basal plane in the range from
0 to 90° with an interval of 15°; then the
anisotropy of Young’s modulus according to
1 (4), as well as the average values of proper-
By = ZbSin40€~ (16) ties and anisotropy coefficients were calcu-

The expressions obtained are harmonic
series describing the anisotropy of the elas-

tic properties of a hexagonal crystal con-

taining oBly AH¢BotroPpyréfseldstpenplitudes

properties of ideal orientations in

of WhirbaSOHRE metihs shpglecTRstagFhar-
actMgielss vith ancentieg1doopenietitatione ot

less than ideal, which include titanium, zir-
niu magnesium. and. thei s, are of
RE R CURILI D JBoRs W
the stréngtR"ERd 8fast?éf‘%‘?nc%a%clé’er]i%tl%%
are of paramount importance. .
arbiftaryn iBlArspPiof e RESt A IHBU LI VEIAL L HE
crystallographic planes depending on their
aalkehel atfedn éli ndtéon pprdlénbaliom] kbl 1690619
was calculated for titanium, zirconium and
forgndsium. The stiffness constants c;j,
from [6] were recalculated into the comp{i-
ance constants\ﬁ(mlz[él_]g&sﬁ@g).the formulas:
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lated for each of the planes of the crystals
of titanium, zirconium and magnesium. The
calculation results are shown in Fig. 2 and
Fig. 8.

The curves E = f(@) for titanium differ
from those for zirconium and magnesium.
In titanium, Young’s modulus in each of
the crystallographic planes increases mono-
tonically from the prismatic direction to the
direction of the projection of the ¢ axis onto
the normal to this plane. For zirconium and
magnesium, for angles a0 < 45°, E decreases,
and for o> 45°, it increases after a mini-
mum at o= 45°.

Average elastic moduli for various crys-
tallographic planes of titanium monotoni-
cally increase with increasing angle o be-
tween these planes and the basal plane. For
zirconium and magnesium, this charac-
teristic changes non-monotonically with in-
creasing o; at first it drops to a minimum
at o= 45°, and then increases to its maxi-

mum value. The anisotropy coefficients n =
E - E -100 % also behave dif-

max min/ E max
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Fig. 2. Anisotropy of Young’s modulus of crystallographic planes of hexagonal a) — o-titanium, b)
— zirconium, ¢) — magnesium, depending on the angle of their inclination to the basal plane
(0001): 1 — 0°, 2 — 15°, 3 — 30°, 4 — 45°, 5 — 60°, 6 — 75°, 7 — 90°.
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Fig. 3. Average Young’s modulus (¢) and anisotropy coefficient (°) of crystallographic planes: a) —
titanium, b) — zirconium, ¢) — magnesium,depending on the angle of their inclination to the basal

plane (0001).

ferently for these metals. For titanium, the
anisotropy coefficient increases monotoni-
cally. For zirconium and magnesium, 1 in-
creases monotonically with increasing o, but
with some delay in the area of o = 45°.

The textures of sheets of titanium and
its o-alloys have been studied in sufficient
detail. The textures of rolling and recrystal-
lization of titanium differ mainly in the
sharpness of the (0001) texture component:
to(ND — TD) [7-10]. There are also basic
and prismatic components in titanium tex-
tures. Therefore, it should be expected that
in the approximation of continuum mechan-
ics, annealed and weakly deformed titanium
samples should have the same anisotropy of
elastic properties. The change in the elastic
characteristics depends on the change in the
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defect structure, namely the resulting dam-
age.

4.Research results

From titanium sheet VT1-0 with a thick-
ness of 1.5 mm (as delivered — the initial
state), two batches of samples were cut at
different angles to the rolling direction
(RD) with an interval of 15° in the form of
a "dog bone” with a working part length of
120 mm and a width of 10 mm. The sam-
ples were subjected to prolonged annealing
at a temperature of 825°C in an atmosphere
of inert gas (argon) for 12 h. No visible
damage was observed in the structure of the
annealed samples in the cross section per-
pendicular to the RD (Fig. 4a).

Then the samples of one batch were sub-
jected to stretching on a tensile testing ma-

Functional materials, 28, 3, 2021
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a)

Fig. 4. Microstructure images: a) — titanium samples annealed at 375°C in a section perpendicular
to the RD; b) — a sample deformed by tension in the TD, in a section perpendicular to the TD.
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Fig. 5. Anisotropy: a) — Young’s modulus in the rolling plane of titanium sheets e — after
annealing at a temperature of 325°C and ° — subsequent deformations by tension up to 5 % of the
samples, cut in different directions to the RD; b) O — coefficient of damage of deformed samples

relative to annealed ones.

chine "Zwick Z100 (100 kN)" up to 5 %
permanent deformation. Rectangular plates
80 mm long were cut from the middle part
of the samples of both batches. The plates
thus obtained were processed in a pack to
ensure uniform lengths.

Young’s modulus was determined by the
dynamic method [11] from the frequency of
natural transverse vibrations of the plates.
The vibration frequency was measured
using the program [12]. Fig. 5a shows the
results of measurements of Young’s modu-
lus by the dynamic method.

The curves of Young’s modulus versus
the direction of measurement for annealed
and deformed titanium samples are similar
in nature. Significant divergence of the
curves starts from the measurement angles
~ 30° relative to RD. The maximum de-
crease in E in the deformed samples as com-
pared to the annealed ones occurs in the
transverse direction (TD). The curves for
the annealed sheets are quite satisfactorily
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approximated by an even Fourier series
with harmonic amplitudes: Ay = 109.61;
Ay =-4.28; Ay =0.19 GPa, and for de-
formed samples: Ay = 108.08; A, =-3.14;
A, = 0.4 GPa. The anisotropy coefficient of
the sheets has changed little. For annealed
sheets and deformed samples, it was 7.4 and
5.8 %, respectively.

Fig. 3a shows that when describing the
texture using a certain effective (statistical)
angle o of inclination of the basal plane to
the rolling plane, in both cases, the angle
o =130 — 40° (ND - TD).

Thus,the effect of texture on the de-
crease in Young’s modules of deformed sam-
ples with relation to annealed ones is not
decisive. B

Damage ratios D =1 — E / Ejy (Eq is Young’s
modulus for the annealed and E for de-
formed samples) [5] were calculated for dif-
ferent directions in the range of RD — TD.
The results are shown in Fig. 5b. The curve
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D = f(¢) is similar in shape to the curve of
Young’s modulus versus the measurement
direction in titanium sheets. Coefficient D
monotonically increases from the minimum
value of the Dgp = 0.28 % to the maximum
DTD = 2.63 0/0.

If we consider the damage as a decrease
in the effective interaction area in the cross
sections of the samples due to the formation
of pores and other discontinuities of the
polycrystal [5], then our measurements indi-
cate that the damage in the cross sections
perpendicular to the TD is slightly higher
than in the TD. Fig. 4b presents the micro-
structure of a titanium sample deformed by
tension in the transversal direction in a sec-
tion perpendicular to the rolling direction.

Damage to the structure in the form of
pores of various shapes and sizes, distrib-
uted in grains in the form of clusters, are
distinguishable in the images of the micro-
structure. Fourier analysis showed that the
dependence of the damage coefficient of de-
formed samples (cut at different angles to
the RD) compared to the annealed standards
is satisfactorily approximated by the series:

D=(1.838-0.99 cos2¢ — 0.2 - cos4()% .

The anisotropy D = D(@) is mainly deter-
mined by the contribution of the second
harmonic. That is D, as a tendency to dam-
age, can be regarded as a property of the
second tensor dimension. This is expressed
in the presence of pores that are close to
elliptical in shape. The influence of the
fourth harmonic is five times less; however,
this does not exclude the appearance of el-
liptical damage with constrictions or thick-
enings.

5. Conclusions

The crystallographic planes of a hexago-
nal crystal, depending on the inclination
angle o to the basal plane (0001), have a
characteristic anisotropy of elastic proper-
ties. The anisotropy of Young’s modulus (E)
of titanium for all planes is monotonic with
a minimum in [1010] direction and a maxi-
mum in [1010] + ©/2. The minimum values
of E for the planes of zirconium and magne-
sium crystals, forming an angle o#0 with
the plane (0001), occur in the direction
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[1010] + /4, and the maximum — in
[1010] + m/2.

2. The anisotropy of E of annealed tita-
nium sheets with an intact structure is ap-
proximated by a Fourier series with har-
monic amplitudes A, = 109.61; A, = —4.28;
Ay = 0.19 GPa. In the microstructure of ti-
tanium samples cut at different angles to
the rolling direction (RD), damages in the
form of pores are observed, their Young’s
modules decreased unevenly relative to the
annealed samples.

3. The anisotropy of the integral damage
coefficient D is similar to the anisotropy of
E, it is approximated by a Fourier series
with harmonic amplitudes Ay = 1.38, A, =
-0.99, A, = -0.2 %. Prevailing influence of
Ay on the anisotropy of D indicates damage
as a property of the second tensor dimen-
sion. This is expressed in the characteristic
shape of pores in the form of ellipsoids.
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