Funct. Mater. 2021; 28 (4): 764-772

doi:https://doi.org/10.15407/fm28.04.764

Thermodynamic and experimental studies of the growth of magnesium-aluminum spinel crystals in molybdenum crucibles

S.V.Nizhankovskyi, N.S.Sidelnikova, O.O.Vovk, Yu.V.Siryk

Institute for Single Crystals, STC "Institute for Single Crystals", National Academy of Sciences of Ukraine, 60 Nauki Ave., 61001 Kharkiv, Ukraine

Abstract: 

The possibility of crystal growth of magnesium-aluminium spinel MgAl2O4 from a melt under protective reducing gaseous media in molybdenum crucibles has been investigated. Thermodynamic estimates of the influence of the oxidizing potential of the atmosphere in the crystallization chamber on the composition of the gas phase of MgAl2O4, the processes of mass transfer, and the interaction of the dissociated products of MgAl2O4 with the crucible material have been carried out. The optimal composition of the protective atmosphere (Ar + CO + H2) and the technological parameters of the crystal growth of MgAl2O4 has been determined. Crystals of magnesium-aluminium spinel with a slight deviation from stoichiometry along the length of the crystal (molar ratio of Al2O3 to MgO from 1 to 1.3) were obtained by the horizontal directed crystallization method. The element analysis has shown that under the developed conditions it was possible to avoid significant contamination of crystals by the crucible material (Mo ≤ 0.018 wt. %). The obtained results testify to the possibility of growing of MgAl2O4 crystals of optical quality without using expensive iridium crucibles.

Keywords: 
magnesium-aluminium spinel, MgAl<sub>2</sub>O<sub>4</sub>, crystal growth, horizontal directed crystallization, molybdenum crucibles.
References: 
1. K.V.Yumashev, I.A.Denisov, N.N.Posnov et al., J. Alloys and Comp., 341, 366 (2002).
https://doi.org/10.1016/S0925-8388(02)00039-7
 
2. I.Ganesh, Int. Materials Reviews, 58, 63 (2013).
https://doi.org/10.1179/1743280412Y.0000000001
 
3. C.C.Wang, J. Appl. Phys., 40, 3433 (1969).
https://doi.org/10.1063/1.1658216
 
4. G.I.Belykh, V.T.Gritsyna, L.A.Lytvynov et al., Functional Materials, 12, 447 (2005).
 
5. T.Sato, M.Shirai, K.Tanaka et al., J. Luminescence, 114, 155 (2005).
https://doi.org/10.1016/j.jlumin.2004.12.016
 
6. A.Tomita, T.Sato, K.Tanaka et al., J. Luminescence, 109, 19 (2004).
https://doi.org/10.1016/j.jlumin.2003.12.049
 
7. A.Jouini, H.Sato, A.Yoshikawa et al., J. Mater. Res., 21, 2337 (2006).
https://doi.org/10.1557/jmr.2006.0280
 
8. A.Jouini, H.Sato, A.Yoshikawa et al., J. Crystal Growth, 287, 313 (2006).
https://doi.org/10.1016/j.jcrysgro.2005.11.027
 
9. B.Cockayne, M.Chesswas, J. Mater. Scie., 2, 498 (1967).
https://doi.org/10.1007/BF00562957
 
10. C.Wyon, J.Aubert, F.Auzel, J. Cryst. Growth, 79, 710 (1986).
https://doi.org/10.1016/0022-0248(86)90542-7
 
11. E.Kasper, P.Korczak, H.Henkel, J. Mater. Scie., 9, 1696 (1974).
https://doi.org/10.1007/BF00540768
 
12. A.L.Bajor, M.Chmielewski, R.Diduszko et al., J. Cryst. Growth, 401, 844 (2014).
https://doi.org/10.1016/j.jcrysgro.2013.11.001
 
13. G.H.Sun, Q.L.Zhang, J.Q.Luo et al., Materials Chemistry and Physics, 204, 277 (2017).
https://doi.org/10.1016/j.matchemphys.2017.10.049
 
14. D.Viechnicki, F.Schmid, J.W.McCauley, Appl. Phys., 43, 4508 (1972).
https://doi.org/10.1063/1.1660953
 
15. T.Sasamoto, H.Hara, T.Sata, Bull. Chem. Soc. Japan, 54, 3327 (1981).
https://doi.org/10.1246/bcsj.54.3327
 
16. N.A.Gribchenkova, K.G.Smorchkova, A.G.Kolmakov et al., Inorg. Mater, 53, 514 (2017).
https://doi.org/10.1134/S0020168517050077
 
17. S.I.Shornikov, Rus. J. Phys Chem A, 91, 10 (2017).
https://doi.org/10.1134/S0036024417010241
 
18. S.I.Shornikov, Rus. J. Physical Chemistry A, 91, 287 (2017).
https://doi.org/10.1134/S0036024417020303
 
19. V.L.K.Lou, T.E.Mitchell, A.H.Heuer, J. Am. Ceram. Soc., 68, 49 (1985).
https://doi.org/10.1111/j.1151-2916.1985.tb15264.x
 
20. Thermodynamic Properties of Individual Substances. Reference Edition: In: 4 vol. / L.V.Gurvich, I.V.Veitc, V.A.Medvedev et al., v.1, Book 2, Nauka, Moscow (1978) [in Russian].
 
21. Thermodynamic Properties of Individual Substances. Reference Edition: In: 4 vol. / L.V.Gurvich, I.V.Veitc, V.A.Medvedev et al., v.3, Book 2, Nauka, Moscow (1981) [in Russian].
 
22. I.S.Kulikov, Thermal Dissociation of Compounds, Metallurgy, Moscow (1969) [in Russian].
 
23. A. Ya Danko, V.M.Puzikov, V.P.Seminozhenko et al., Termal Dissociation of Compounds, Moscow, Metallurgy. Technological foundations for growing leucosapphire under reducing conditions. Kharkov, ISMA (2009)
 
24. A.Ya.Danko, N.S.Sidelnikova, Functional Materials, 8, 271 (2001).
 
25. O.Knacke, I.N.Stranski, Progress in Metal Physics, 6, 181 (1956).
https://doi.org/10.1016/0502-8205(56)90007-7
 
26. A.M.Vasserman, L.L.Kunin, Y.N.Surovoj, Determination Gases in Metals, Nauka, Moscow (1976) [in Russian].
 
27. R.Reed, J.Praushnitz, T.Sherwood, Properties of Gases and Liquids, Chemistry, Leningrad (1982) [in Russian].
 
28. S.V.Nizhankovskiy, A.Ya.Dan'ko, E.V.Krivonosov et al., Inorg. Mat., 46, 35 (2010).
https://doi.org/10.1134/S0020168510010085
 
29. R.I.Sheldon, T.Hartmann, K.E.Sickafus, J. Am. Ceram. Soc., 82, 3293 (1999).
https://doi.org/10.1111/j.1151-2916.1999.tb02242.x
 
30. S.T.Murphy, C.A.Gilbert, R.Smith, Philos. Mag., 90, 1297 (2010).
https://doi.org/10.1080/14786430903341402

Current number: