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Effects of grain-size and specimen thickness
on dislocation kinetics in uniaxially strained
thin Al sheets with one grain in thickness
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This study expands the well-known Kocks-Mecking strain hardening model by describ-
ing the effects of grain size and sample thickness, as well as the kinetics of dislocations
during uniaxial deformation of thin aluminum sheets with one grain in thickness. In the
kinetic equation for the dislocation density, the coefficients are determined for the case of
flat samples with a "pancake” grain structure. The kinetic equation was transformed using
Taylor’s law of strain hardening in a standard way; and the solution to this equation was
obtained to calculate the stress — strain curve of Al specimens with average grain sizes
and thicknesses in the range of 0.2 < d, < 20 mm and 0.05 < ¢ < 1 mm, respectively. An
approximate Hall-Petch type relation is obtained. Based on the kinetic consideration of the
processes of storage and recovery of dislocations, the effect of the grain size and specimen
thickness on the flow stress and the strain-hardening rate is studied. The calculation
results are in good agreement with obtained experimental data.

Keywords: uniaxial straining, dislocation kinetics, thin Al sheets, "pancake” grain
structure.

EdexTu BrMBY po3mipy 3epeH i TOBIIMHM 3Pa3Ka HA JUCAOKAIIMHY KiHETHKY IIpH
OIHOOCHEOBOMY PO3TATYBAHHI TOHKHX AJIOMiHi€BHX NIJIACTHH 3 OJHHM IHapoOM 3€peH 3a
ToBuuHOKW. €. B.®mvomos, O.B.Illexosyos, €.10.Badian, A.I.Tornxonpsd

IIpoBegene mocnmimxeHHsa mokasajo, 1o Bimoma Kocks-Mecking momens medopmaliifinoro
3MiITHeHHA AJA ONMICY AUCHOKAIliiiHol kiHeTuKU Ta edeKTiB BIIUBY Po3Mipy 3epeH i ToBIIU-
HU 3pasKa IPU OZHOOCHOBOMY POSTAIYBAHHI TOHKWX ATIOMIHIEBMX IJIACTUH 3 OJHUM IIAPOM
3epeH 34 TOBIIMHON OTPUMAJA IOJANBINNIN PO3BUTOK. ¥ KiHeTHMYHOMY PIBHAHHI A4 I'yCcTHUHU
QUCIOKAIlil BusHAUEeHO KoedIiI[ieHTH y BUNAAKY IIJIOCKNX 3PasKiB i3 "MIMHIEBOI™ 3epeHHOI0
crpyKTypow. KimernmuHne piBHSAHHS HepeTBOPEHO y CTAHZAPTHUI croci6 i3 BUKOPUCTAHHSIM
sakoHy gedopmariifinoro aminuenusa Tefinopa @ oTpuUMaHO PO3B’A30K ITHOTO PIBHAHHA AIA
PO3paxyHKY KpHEBOI ~HampyKeHHs-ZedopMaliia amoMiHieBUX 3paskis i3 cepefguiMm posmi-
pamu sepeH i ToBmuHamMmu B iHTepBamax 0.2 <d, <20 mm i 0.05 <t <1 mm BigmosigHo.
OpmepskaHo ampoKcuMAallifiHe CIIiBBiJHOINIeHHA, AKe € aHaAJOTiYHUM CIiBBigHOINIeHHIO XoJJa-
ITeTua. Ha mimcraBi KiHeTWYHOrO POSTJIALY IIPOIeCiB HAKONUYEHHA Ta SHUKHEHHS JUCJIO-
Kallifi JochifixeHO BIJIMB pPO3MIpy 3€peH 1 TOBIMUHN 3pasKa Ha HANPY/KEHHS JIUHY Ta
KoediuienT gedopmariifinoro sminHeHus. 3icTaBieHHs pe3yJbTaTiB PO3paxyHKIB 3 omgepixa-
HIUMU €KCIePUMEeHTAJLHIMU FAHUMU CBiIUUTEH IpPo IXHIO ZOOPY Y3TOLIKEeHIiCTb.

ITonyunna manpHelimee passurue usBectHas Kocks-Mecking mogens gedopmarimonsoro
YIOPOUHEHUA IS OIUCAHUSA JUCIOKAITMOHHON KUHETHUKN U 3hGeKTOB BINAHUA pasMepa
3epeH U TOJIIWHBI 00paslla IPU OZHOOCHOM PACTIYKEHNUN TOHKUX AJIOMUHUIEBBIX IJACTUH C
OZHUM CJIOEM 3ePeH II0 TONINVHe. B KMHeTHUYeCKOM ypaBHEHUH IJA IJOTHOCTU IUCIOKAITUH
ompefeseHbl KOdDOUIMEHTHl B clydae IJIOCKUX OOpPA3IlOB €  OJIWHHON 3epPeHHON CTPYKTY-
poti. Kunernueckoe ypaBHeHNe IpeobpasoBAHO C UCIOJNB3OBAHNEM 3aKOHA AedOPMAIIIOHHOIO
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yupounenus Teiisopa cTaHAZAPTHBIM OOPA30OM M MOJYUEHO DEIIeHMe STOTO YPABHEHUS [Jis pac-
yeTa KPUBOU HampsxeHue-gedopManys’ AJIOMUHNEBLIX OOPA3IOB CO CPEAHUMHN pasMepamu
3epeH u TosuHAMH B uHTepBanax 0.2 <d, < 20 mm u 0.05 < £ < 1 MM coorBercTBerHO. [loy-
YEHO ANMPOKCUMAIIMOHHOE COOTHOIIIeHNE, AHAJIOTMYHOe COOTHOIIeHM Xosua-Iletua. Ha ocHoBe
KWHETHYECKOT0 PACCMOTPEHNS IIPOIIECCOB HAKOIJICHNUSA U MCUE3HOBEHUS AUCIOKAINI MCCIefoBa-
HO BJMSHNE pasMepa SepeH M TOJIIWHBI 00pasila HAa HANpSasKeHUe TeueHusa U KoapduirmeHT
medopMarionHoro ynpounenns. ComocTasienme pe3yIbTaTOB PacueTa ¢ IOJIyYeHHBIMY SKCIIeP-
MEHTaJbHLIMHU JAHHLIMU CBUAETEILCTBYET 00 X XOPOIIIEM COTJIACOBAHIIM.

1. Introduction

Polycrystalline metals are widely used
for the fabrication of tools and for support-
ing structures. The mechanical properties
and deformation mechanisms of bulk metal
are well known. Recently, micro- and
nanocrystalline materials have been used in
the medical industry, microelectronics, and
nanotechnology. Thin films, foils and plates
with a several grains across thickness are
processed and examined [1-6].

The mechanical behavior of thin sheets is
sensitive not only to microstructure. The
mechanical properties of thin specimens de-
pend on the grain size d and the thickness t.
It is well known that fine-grained metals
are stronger than coarse-grained metals due
to the influence of grain boundaries on the
accumulation of dislocations. In particular,
the Hall-Petch relation describes the de-
pendence of initial yield strength on grain
size [7, 8]. On the other hand, the experi-
mental results showed that the flow stress
decreases with decreasing sample thickness,
when the number of grains in thickness be-
comes less than the critical value. The criti-
cal thickness increases with both a decrease
in the grain size and a decrease in the
stacking fault energy [9]. In [2], the me-
chanical behavior under uniaxial tension of
99.999 at.% Al polycrystalline sheets of
various thicknesses in the range of 100-
340 um and an average grain size from 75
to 480 um was experimentally investigated.
For specimens with 1 <#/d, <38 (d, is the
average grain size measured on the speci-
men surface), the flow stress increases sig-
nificantly with increasing t/d,. For 0.4 <
t/d, <1, there is a slight increase in the
flow stress. For t/d, <1, the flow stress
depends only on ¢/d, and not on the abso-
lute thickness or average grain size, while
for t/d, > 1 there is a dependence on the
grain size.

Since changes in properties occur due to
changes in structure, models in materials
science must be based on the relationship
between structure and properties. The the-
ory of work hardening is expressed by dif-
ferential equations; while their integrals
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give stress-strain curves o(€) [10-12]. Dislo-
cation movement causes the plastic defor-
mation. A widely used concept of the theory
of plasticity is that the flow stress ¢ de-
pends on the structure changing with strain
g, and the dislocation structure can be rep-
resented by the single parameter p, the dis-
location density. It is assumed that, at
given p, the flow stress ¢ depends on the
strain rate € and temperature T [10]. At low
and medium temperatures, the kinetics of
hardening is determined by stress-induced
slip processes that control both the accumu-
lation of dislocations and their mutual anni-
hilation [12].

Equations for dislocation density evolu-
tion developed for bulk metals must be cor-
rected for thin films, foils and plates. In
[18], the dislocation-kinetic approach is
used to describe uniaxial straining at a me-
dium temperature and a constant strain rate
for flat plate polycrystalline specimens of
pure metals with a thickness and average
grain size in the range from ~ 50 um to
macroscopic values. The features of plate
specimens were taken into account, such as
the effect of strain hardening by “vertical”
grain boundaries (see 3.2.2) in the grains of
the surface layer and the role of the free
surface as a source and sink for disloca-
tions. In this article, the model is modified
for thin sheets with one grain in thickness.
The aim of this work is to use the disloca-
tion-kinetic approach to study the effects of
grain size and thickness in Al plates with
two-dimensional pancake-shaped crystals in
uniaxial tension experiments at room tem-
perature and constant strain rate.

2. Experimental

A material with high stacking fault en-
ergy is preferred because this hampers the
formation of twins which absence gives a
simpler microstructure [2]. FCC metals are
considered suitable as having many active
well defined slip systems [2, 14]. Their
uniaxial straining is generally well studied.
For these reasons, we used pure aluminum
(99.96 %) as an FCC metal with high stack-
ing fault energy.
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Fig. 1. Typical crystallographic orientation of
grains (a) and typical slip pattern (b) in the
tensile specimens.

The specimens were processed by prelimi-
nary uniaxial straining and recrystalliza-
tion. Strips with a square cross section of
20 mmx0.2 mm and a width of 100 mm
were cut from the aluminum foil, parallel to
the original rolling direction. The strips
were annealed at 400°C for 2 h to relieve
internal stresses. Then, the strips were
uniaxially strained to various degrees in the
range of 1-4 % to obtain different grain
sizes. Finally, the specimens were recrystal-
lized in air at 300°C for 2 h and 630°C for
2 h. To identify the grain structure, chemi-
cal etchant is used: 30 ml of HCI, 20 ml of
HNOj3;, 5 ml of HF, 30 ml of HyO (etching
time is 10 s).

To analyze the dislocation sliding and de-
termine active slip systems, the specimen
surface was mechanically polished. The mi-
crostructure of the specimen surface was
analyzed using a MIM-8 optical microscope
and a Jeol JSM-840 scanning electron mi-
croscope. The crystallographic orientation
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Fig. 2. Experimental (--) and theoretical (-)
stress — strain curves of two selected thin
sheets of pure aluminum (99.96 %) with two-
dimensional pancake-shaped crystals at room
temperature and the strain rate of 5-107% 71,

of grains in the specimens in the unde-
formed state and after tensile deformation
was determined by X-ray diffraction (the
direct Laue method).

Tensile experiments were performed on
Al sheets of various thicknesses in the 110—
170 pym range with pancake-shaped crystals
with different average grain sizes from 0.2
to 20 mm to obtain stress-strain curves o(€)
and the curves of stress versus grain size
and thickness. The true stresses ¢ and loga-
rithmic strains € were calculated as

e =1In(l/1y) and 6 = (F/Ag)(1/ L),

where F is the measured force, [, is the
initial length, [ is the actual length, A, is
the initial cross-sectional area. The speci-
mens were strained on air until the failure.
The strain rate used was 51075 s71,

3. Results and discussion

3.1. Microstructure,
polycrystal deformation

slip pattern and

Fig. 1a shows a typical crystallographic
orientation of grains of the tensile specimens
in the undeformed state. As an example, in
each of the six typical specimens, crystal-
lographic orientation of five grains is shown
(see also Table). It should be noted that
grains with a special orientation practically
are not detected. In particular, grains with a
cubic orientation which is characterized by
the action of four equal slip systems are prac-
tically not observed. The grain orientation is
random and there is no texture.

Based on the results of studying the sur-
face of deformed samples by optical and
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Table 1. Local strain in grains and overall strain of specimens with various thicknesses and

average grain sizes until the failure

Specimen Local strain in grains
Grain 1 Grain 2 Grain 3 Grain 4 Grain 5

Specimen I 10.3% 11.7% 21.7% 11.7% 20.1%
t =114 um, d_, = 7.5 mm, € = 15.1%

Specimen II 10.7% 10.8% 14.4% 13.83% 16.8%
t =159 um, d, = 8.9 mm, ¢ = 13.7%

Specimen III 7.1% 10.0% 6.6% 10.4% 9.2%
t =167 um, d_= 4.1 mm, € = 9.3%

Specimen IV 14.5% 14.3% 18.3% 11.1% 8.7%
t =161 um, d, = 5.7 mm, € = 12.0%

Specimen V 6.6% 11.4% 6.6% 10.7% 18.5%

t =185 um, d, = 14.3 mm

, €= 9.9%

Specimen VI 15.83% 12.9% 11.1% 10.2% 8.7%
t =135 pm, d, = 14.1 mm, &£ = 12.0%

electron microscopy methods performed ear-
lier [15, 16] and in this work, it was found
that, in most cases, in grains of two-dimen-
sional polyerystalline aluminum foils under
active tensile loading at room temperature,
dislocation sliding occurs mainly in one pri-
mary slip system. This is apparently due to
the absence of constraint in the grain struc-
ture and plastic deformation over the thick-
ness of the sample. Fig. 1b (SEM mi-
crograph) shows a typical slip pattern in
two adjacent grains near their boundary
(vertical traces in two grains correspond to
residual rolling marks and coincide with the
direction of the tensile axis, € = 15 %) [15].

In Fig. 2, examples of true stress-strain
curves are shown. The dotted green and red
lines correspond to the specimen with ¢t =
159 um, d,=28.9 mm and the specimen
with t = 142 pm, d, = 1.4 mm, respectively.
According to uniaxial tensile experiments,
strain hardening depends on the average
grain size and sample thickness.

Table 1 shows the characteristics of plas-
ticity until the failure of random selected
five grains in six typical specimens; the
crystallographic orientation of the grains in
the undeformed state is shown in Fig. 1a.
Grains have different local strain, which
can be greater or less than the strain of the
specimen. Thus, there is an inhomogeneity
of strain in the tensile specimens. This in-
homogeneity causes a small difference be-
tween the experimental and theoretical (see
3.8.1) stress-strain curves in Fig. 2.
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3.2. Elements of dislocation theory

3.2.1. Flow stress and dislocation density
An increase in the flow stress with strain is
due to the accumulation of dislocations. In
the dislocation theory of plasticity, the flow
stress T and dislocation density p are related
by Taylor’s equation [17]:

T= O‘Hb\/P-, (1)

where |l is the shear modulus and & is the
magnitude of the Burgers vector of disloca-
tions; o is a numerical constant of the order
of unity, which partially depends on the
strength of the dislocation/dislocation in-
teraction [10].

As the flow stress T is determined by (1),
its change with strain is due to the disloca-
tion accumulation and dynamic recovery of
dislocations. In the Kocks-Mecking model
[10-12], the equation for the evolution of

p:

d
:i% = kypl/2 — kyp, 2

where vy is the shear strain. The first term
in (2) is associated with the thermal accu-
mulation of moving dislocations. The second
term is associated with dynamic recovery of
dislocations.

In the present paper, we study uniaxial
straining of a thin sheet of pure Al, in
which the effect of free surface is impor-
tant. The free surface serves as both the
source and the sink for dislocations. Taking
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this into account, the equation (2) can be
written in the form presented in [18]:
Sn
odp _ 575 ®
dy Vb

1
k1p3/2 — 27 — kgp?.

Here S is the surface area of the specimen,
and V is its volume; ng is the density of
dislocation sources on the surface; b is the
magnitude of the Burgers vector; L denotes
the mean-free path of dislocations through
the crystallite. The first term in (3) deter-
mines the dislocation emission from the sur-
face dislocation sources with the density n,,
and the third term describes the escape of
dislocations from the crystal through its
surface.

3.2.2. Polycrystal effects

In polycrystalline materials, grain bounda-
ries are important obstacles to slip. Grain
boundaries can influence on strain hardening
by an additional contribution to the accumu-
lation rate so that (2) transforms to

d 1 4
:i% :ﬁ + k1p1/2 _kzp, ( )

where d is the average grain size [12]. The
first term in (4) describes the effect of
grain boundaries in bulk polyecrystals which
can be considered as three-dimensional for-
mations of crystals with ¢ >> d.

Thin plates with one grain in thickness
are two-dimensional formations of crystals
in the form of pancakes (d, >> t) with two
free surfaces. Such specimens have only
"vertical”™ grain boundaries, i.e. grain
boundaries that are approximately perpen-
dicular to the specimen surface, which ob-
struct dislocation movement [2, 3]. The de-
formation will occur in such a way that the
central part of the crystal will be more free
for the movement of dislocations than the
regions of grain boundaries. Thus, the
grains of a thin plate with two free surfaces
are composed of a softer central part and
harder regions near the grain boundaries [1, 2].
Pile-up of dislocations occurs in the harder
regions at the grain boundaries, while in-
side softer grains, dislocations emerge
through free surfaces. Indeed, electron mi-
croscopic studies of the dislocation struc-
tures show a difference in the dislocation
structure for core and surface regions of
specimens with a different number of grains
in thickness [1, 3, 9].

As in bulk metals, grain boundaries an
important obstacle to the movement of dis-
locations in thin films, foils, and plates.
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Dislocation movement is impeded by grain
boundaries throughout the bulk of the sam-
ple, if ¢ >> d, so that the numerator in the
first term in (4) is equal to one. If we now
consider a thin plate with d; >> ¢, then this
numerator may be written as:

oo (5)
L T 7

where A, is the volume fraction of the hard
boundary region, V; is the volume of the
hard boundary region, V, is the volume of
the soft core region [13]. Therefore equa-
tion (3) takes the form

A Sn 6
p‘;—%%p +yp kP2 —%p—kzpz-( )
Here, the condition d = L for a thin plate
specimen with d; >> t is taken into account
in the first term. It should be noted that
equation of the form (6) without the third
term and with another coefficient in the
first term was used in [4] for theoretical
analysis of the effect of reduction in the
strength and deviation from the Hall-Petch
relationship in fine-dimensional microcrys-
talline and nanocrystalline specimens of fecc
metals. According to [4], the third term
could be ignored in (6) because the mecha-
nism of dislocation multiplication on forest
dislocations breaks down in a nanocrys-
talline material with a grain size of d <
1-10 pum. In [4], the first term was written
as (B/bd)p. Here B is the relative fraction of
grains, which contributes to the grain
boundary strengthening. It depends on the
ratio between the size factors d and t. The
relative fraction of grains is given by B =
1-AS_./S.; [2, 4], where AS_, is the total
surface area of the surface grains in the
cross section of the specimen, S, is the
cross sectional area. In this paper, we use
equation (6) to study of grain-size and speci-
men thickness effect and kinetics in an
uniaxially strained thin Al plate with d, >> t.

Taylor assumed that the strain increment
is the same for all grains so that

Mde = dy, )

where M is the Taylor factor [19]. Equaliza-
tion of internal and external work: tdy=
ode. Here ¢ is the normal stress, € is the
logarithmic strain. Therefore

Functional materials, 28, 4, 2021
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Mrt=o. (8)

Using (1), (7) and (8), equation (6) can be
expressed as

—a.5-1 3 —a,5l—
do/ie = a;671 + a,6% +az - a,0 aso, (9)

where a; = (oub)2M3\,,/2Lb, a4 = (oub)*
M5Sn /2Vb, ag = OUbM?k,/2, ay =
(oub)>M3/2Lb, a5 = Mky/2. In this study,
equation (9) is the basis for the considera-
tion of strain hardening of pure Al speci-
mens with pancake-shaped crystals with two
free surfaces at room temperature and a
constant strain rate.

3.2.3. Strain hardening

If the coefficients a;, ay, a3, a4, ag of
equation (9) are assumed to be constant,
then integration of (9) gives

Alnlo — %,| + Bln|o — Xo| + Clnlo? + (10)
c+& /2

+ &0+ &y + Darctg(m +Cy=¢.
Here, the new parameters A, B, C, D, X, Z,,
€1, &y express the coefficients aq, aq, ag, ay,
a5. According to (1) and (8), the constant of
integration C, is determined from the in-
itial condition at € = O:

o(0) = Moybp3, (11)

where p, is the initial dislocation density.
Solution of (10) gives the dependence of o
on € in an implicit form. It will be further
used in connection with the study of strain
hardening. In particular, using (10) we can
calculate the strain-hardening rate
0 = do/de according to (9).

The coefficients of (9) contain parame-
ters M, A,, L which depend on the grain
orientation. According to [14], the polycrys-
talline tensile stress-strain curve c(g) may
be calculated based on the stress — strain
curves for single crystals; this is based on
the observed correlations between mechani-
cal behavior of polycrystals and single crys-
tals. In [20], the stress — strain curves G(g)
are superimposed to take into account the
average M-factor of the three groups of
grains and weighted in accordance to their
volume fractions in the polycrystal. We will
consider the problem of polycrystal averag-
ing o(€) in the similar way and calculate the
stress — strain behavior of two-dimensional
polycrystal by averaging the stresses in all
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grains. A resulted stress-strain curve c(€) is
calculated as the sum of N contributions for
a two-dimensional arrangement of crystals
in form of pancakes:

0(e) = 1161(€) + f905(€) + ... + [xOn(E). (12)

Here f; is the volume fraction of the group
of grains with the same grain orientation
(with the same values M;, (A,);, L;); o,(¢) is
determined from the (10) for values M,
Ay L.

3.3. Analysis of mechanical behavior of
thin Al sheets with one grain in thickness

3.3.1. Stress — strain curves

The primary goal of a theory of work
hardening is a prediction of the stress-
strain curve [12]. In the present work, we
analyze uniaxial deformation of pure Al
specimens with pancake-shaped crystals
with an average grain size of 0.2 <d, <
20 mm and a thickness of 0.05 <t <1 mm
at room temperature and a constant strain
rate. Experimental data shows that in many
cases, slip predominantly occurs in a single
slip system within a grain; therefore, we
take into account only one active slip sys-
tem in the calculations. We believe that our
approach is relevant for uniaxial deforma-
tion of thin Al sheets with pancake-shaped
crystals. In all calculations using (9)—(12),
it is assumed that

s_2

2 13)
V t w

+

for specimens with a rectangular cross sec-
tion (if ¢t <<w then S/V = 2/t),

t (14)
cos¢’

M = 1/m [4], where m is the Schmid fac-
tor for an active slip system in a grain, ¢ is
the angle between the slip direction and the
"vertical” direction in the specimen. For
aluminum we wuse u=27 GPa, b=
0.286 nm, and also ng = (0.1-0.2)-1012 m~2,
k= 1072/p, ky =17, oo = 0.82 which corre-
lates with [18, 21].

Often the shape of the grains is chosen
such that a regular hexagon is obtained in
the cross section of the grain by the surface
of the sample. The problem with the analy-
sis is that the volume fraction of the hard
boundary region A, depends on the hexagon
orientation relative to the tension axis. All
possible orientations of a regular hexagon
are contained within a circle with a diame-

L=
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Fig. 3. Dependences of initial yield stress ¢, on average grain size ds’l/ 2 for thicknesses 75 um and

Y

150 um (a); and on thickness ¢ for average grain sizes: 1.5 mm and 15 mm (b).

ter dy circumscribed around it. Therefore,
we will assume that the grains have a cylin-
drical shape which gives a circle of diameter
d, in the cross section of the grain by the
"horizontal™ surface of the thin plate speci-

men. Then A, can be calculated analytically:

V1 - 22(2 +y2)/8 - yarccog) (15)
(1 -y

7\,h=2

where x =1 - 2tany/(¢/d,), v is the angle
between the slip plane in the grain and the
"vertical”™ direction (normal direction) in
the specimen with pancake-shaped crystals.

According to [21-24], grain boundaries
are assumed to act as sources of disloca-
tions. The dislocations emerge from the
grain-boundary ledges. Let 0 be the ledge
density (the number of ledges per unit
length of a grain boundary [23]). Then the
number of dislocation sources in the grain
boundary is expressed by the relation: N =
S;d?/2. Here S;p is the grain boundary
area and the factor 1/2 arises from the fact
that each boundary is shared by two grains
[21, 22]. The total length of dislocations
emerging from the grain boundary during
yielding is NLg; where Ly is the length of
dislocations emerging from each source.
Therefore the initial density of dislocations
is pg = Spd2Ly/ 2V, where Vi, is the grain
volume. In [21, 22], for a spherical grain
with a diameter d: py = 88%L,/d. As noted
above, we will assume that the grains have
a cylindrical shape with a diameter dg and a
height H =t for thin plates with one grain
in thickness. In this case,

(16)

282L0
Po = d

8
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In [21], the value 83%Lyb = (1-2)-1073 was
used in calculations for aluminum. So we
will assume that 282Lyb = 1072 in (16), and

therefore, py = 1073/bd,.

Fig. 2 shows the stress — strain curves
for specimens of thin sheets of pure alumi-
num (99.96 %) with pancake-shaped crys-
tals with only one grain in thickness. The
dotted and solid lines correspond to the ex-
perimental data and calculations by formu-
las (10-16), respectively. The calculation re-
sults are in good agreement with experi-
mental data.

3.3.2. Grain-size and specimen thickness
effects in the uniaxial straining of thin Al
sheets

The mechanical behavior of polycrystals
depends both on the grain size and on the
thickness of plate specimens and films [2-4, 9].
The effects of grain size and specimen
thickness in the uniaxial straining of thin
Al sheets with pancake-shaped crystals at
room temperature and a constant strain rate
can be explained by accumulation and recov-
ery of dislocations according to equations
(6), (9) and solutions (10-16). The grain-
size effect is described by the coefficient in
the first term in (6) and (9), which depends
on the average grain size d; (see (15)). In
addition, the constant of integration C, in
(10) is determined by the initial dislocation
density pgy according to (11), which is in-
versely proportional to d, (16). The thick-
ness effect is described by the coefficients
in the first, second and fourth terms (see
(13-15)). In (6) and (9), the first and second
terms are associated with an increase in the
dislocation density with strain, and the
fourth term is associated with a decrease in

Functional materials, 28, 4, 2021
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Fig. 4. Dependences of the flow stress ¢ (a, b) and the strain-hardening rate 0 (¢, d) on the ratio
t/d, with fixed thickness (a, c) and fixed average grain size (b, d) for various strain levels: 0.2 %,

2 % and 10 %.

the dislocation density with strain. The
grain-size (d;) and specimen thickness (t)
effects are discussed below based on calcula-
tions using formulas (10-16).

In the early stages of deformation, grain
boundaries are important obstacles to mov-
ing dislocations. The dependence of initial
yield stress G, on average grain size d can
be expressed according to the well-known
Hall-Petch relationship [7, 8]:

6, =0y + kd1/2,

y 17)

where 6, and k are structure-dependent con-
stants. In thin Al sheets with one grain in
thickness, there is a deviation from the
Hall-Petch relationship. According to calcu-
lations in the present study, the dependence
of the initial yield stress ¢, on the average
grain size d, is non-linear (Fig. 3a), and in-
stead of expression (17), it is approximated
by another power function:

6, = O + k(t)d;3/2,

y (18)
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with the essential feature that the coeffi-
cient k increases with increasing thickness
t. This increase of the coefficient £ was
experimentally observed in [2] at a logarith-
mic strain of 0.1.

In [25], a power law of the form ¢ = 64 +
kd" is discussed. According to several stud-
ies, the grain-size exponent should be some-
thing other than —1/2. For example, n was
-1/8 for the fecc metals and ranged from
-1/2 to —0.9 for the bce metals, or n = —-1/4
or n =-1. Our result n = —-3/2 differs sig-
nificantly from these values. It should be
noted that the parameters d and d, have
different meanings. Pancake-shaped crystals
are not equiaxed in three dimensions. On
the specimen surface, grain dimensions
have to be characterized by a size parameter
dy, whereas the dimension for thickness is
given by a size parameter d,. For pancake-
shaped crystals, d, >> d, = t, so d, is taken
as a representative grain size parameter [2].
In bulk polycrystals, the mean-free path of
dislocations is limited by the grain size d.
For thin plates with dy >> d,, the mean-free
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path of dislocations L is determined by Eq.
(14) and does not depend on d,. Pile-up of
dislocations at the vertical grain boundaries
in the harder grain boundary regions and
escape of dislocations through the free sur-
faces in the softer grain interiors are ob-
served. The first term in (6) describes the
effect of grain boundaries in thin plates
with pancake-shaped crystals. The grain
size dependence is only due to the vertical
grain boundary regions. The role of the pa-
rameter d; is that as d, decreases, the vol-
ume of the hard vertical grain boundary
region V, and the volume fraction of the
hard vertical grain boundary region A, (5)
increases according to (15) (the grain-size
effect).

In Al sheets with pancake-shaped crystals
with various average grain sizes, initial
yield stress decreases with increasing thick-
ness (Fig. 3b). A similar trend was found in
[4]. Such dependence Gy(t) is due to the fact
that at the early stage of deformation, the
second term dominates in (6), i.e. the dislo-
cation emission from the surface dislocation
sources (the free surface effect) plays a
dominant role in mechanical behavior.

With an increase in strain €, the charac-
ter of the stress dependence on the grain
size and thickness of the specimens changes.
With further uniaxial deformation, the
relative role of surface dislocation sources
is significantly weakened and the relative
role of the multiplication of dislocations on
forest dislocations and the annihilation of
dislocations increases. The third and fifth
terms in Eq. (6), which are associated with
the thermal accumulation of moving dislo-
cations and with dynamic recovery of dislo-
cations, respectively, begin to dominate. As
a result, as the deformation significantly
exceeds 0.2 %, an increase in stress with a
decrease in grain size becomes more pro-
nounced (Fig. 4a), and the decreasing de-
pendence of stress on thickness turns into
the increasing dependence (Fig. 4b). In addi-
tion, Fig. 4a and Fig. 4b show the depend-
ence of the flow stress on the ratio #/d,, as
was done in [2, 9] for various strain levels
at fixed thickness and fixed grain size, re-
spectively. According to [2], the flow stress
is only dependent on t/d, and not on the
absolute thickness or average grain size;
but as can be observed (see Fig. 4a, b), the
flow stress depends not only on the ratio
t/dg, but also on the parameters ¢ and d
separately.

Analysis of the dependences of the
strain-hardening rate 0 = do/e (9) on the
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ratio t/d, for various strain levels at a
fixed thickness (Fig. 4c¢) and fixed grain
size (Fig. 4d), respectively, also shows that
0 depends on each of the parameters t and
d, separately, and not only from their ratio.
In the early stages of deformation, the
strain-hardening rate 0 increases with de-
creasing grain size and specimen thickness.
With an increase in strain, the value of 0
decreases, while the dependence of 6 on the
grain size becomes weaker, and the depend-
ence of 6 on the thickness turns from de-
creasing to increasing. Thus, the observed
dependences of the flow stress and the
strain-hardening rate can be explained by
competition between the accumulation and
annihilation of dislocations, proceeding
from the equations of the kinetics of dislo-
cations (6) and (9).

4. Conclusions

Taking into account the feature of the
structure and geometric shape of flat two-
dimensional polycrystalline Al specimens,
the coefficients of the kinetic equation
which describes the evolution of the disloca-
tion density under uniaxial tension at a con-
stant strain rate at room temperature have
been calculated. Based on the equations of
dislocation kinetics, the stress — strain
curve o(€) for flat Al specimens with a "pan-
cake” grain structure was calculated theo-
retically. The calculation results are in good
agreement with the experimental data for Al
specimens (99.96 %) with various thick-
nesses in the range of 110-170 um and dif-
ferent average grain sizes from 0.2 to
20 mm.

The kinetic consideration of the proc-
esses of multiplication and annihilation of
dislocations made it possible to found the
dependences of the flow stress and the
strain-hardening rate on the average grain
size and specimen thickness in the ranges
0.2 <d; <20 mm and 0.05 <t <1, respec-
tively. The dependence of the coefficients of
the kinetic equations on the grain size and
specimen thickness explains the d,- and ¢-
size effects studied in the present work.

For the initial yield stress, an approxi-
mate Hall-Petch-type relation is obtained,
in which the coefficient at the power func-
tion of the grain size depends on the speci-
men thickness, and the exponent of this
function is —-3/2. The initial yield stress
decreases with increasing specimen thick-
ness. At strains significantly exceeding
0.2 %, an increase in stress with a decrease

Functional materials, 28, 4, 2021
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in grain size becomes more and more pro-
nounced, and a decreasing dependence of
stress on thickness turns into an increasing
dependence. In the early stages of uniaxial
deformation, the strain-hardening rate 6 in-
creases with decreasing grain size and speci-
men thickness. With an increase in strain,
the value of 0 decreases, while the depend-
ence of 6 on the grain size becomes weaker,
and the dependence of 6 on the thickness
changes from decreasing to increasing. The
changes in the course of the considered de-
pendences with an increase in strain are ex-
plained by the fact that at different stages
of deformation, different terms in kinetic
equations that describe dislocation accumu-
lation and annihilation of dislocations are
dominated.
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