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For solids and molecular structures, the spin gap, A, is usually defined as the lowest electronic
transition energy with a minimal nonzero change of the ground-state total spin. Here we apply
T-electron semiempirical schemes to estimate A, in nanosized conjugated systems of graphene
quantum-dot and chain-like types. Namely, the spin-flip configuration interaction singles (SF-CIS)
and appropriately specified Heisenberg spin-Hamiltonian (HSH) models are employed. It is shown by
comparison with results of the exact m-electron theory that the simplest version of SF-CIS reason-
ably reproduces A, in small-size problems, thus providing a justifiction for using the method in
related problems. A particular attention is given to ferromagnetic oligomeric systems based on
phenalenyl and triangulene subunits. The conjunction of SF-CIS and HSH approaches gives an
efficient numerical scheme for estimating A_ in very large chain-like magnetic structures.

Keywords: m-electrons, graphene molecules, polyradicals, organic ferromagnet, ex-
change integral, Heisenberg’s spin Hamiltonian.

Ouingu coiHoBOI IMiIMHH B CIPIMKEHHX HAHOMOJEKYJAAX 3a METOAOM OJHOKPATHHUX
30ynsxens cuin-guain. A.B.J[ysanos

Cminopa mrinuma, A, CTOCOBHO TBEPAVX TLl Ta MOJEKYJISPHUX CTPYKTYP 3a3BUYAl BUSHA-
YaeThbeA K €HePrig HAaHIDKUOTO eJeKTPOHHOTO IIePeXOoLy 3 MIiHIMATBHON) HEHYJIHLOBOI 3MiHOIO
TIOBHOTO CIIiHa OCHOBHOI'O cTaHy. B manifi po6ori 3acTocoBaHo T-€JIEKTPOHHI HamiBeMmipruni migxomy
A7 OIiHOK A, y HAHOPOSMIPHUX CYNPssKeHMX CHCTeMax 3a THIIOM KBAHTOBUX SM T4 3 JAHITFOTOBO-
nogibHOK cTPYKTypo. Besmocepenuno BukopucryBasvich Merof, Koudirypariiaol Bzaemoxnii SF-CIS
(omHOKpaTHI 30yAMKEHHA 3a TUIIOM CIIiH-(JIIN) Ta chelliansoBaHa MOZeNlb Ha OCHOBI CIIiH-TaMilIbTo-
uiamy Tatisenbepra (HSH). IlopiBusnusA 3 pesyibTaTaMu TOUHOL N-eJIEKTPOHHOI Teopil mus samad
MAJIOTO PO3MIpPY [JEeMOHCTPYE IpUIHATIMBICTL Halimpoctimoi sepeii SF-CIS crocoero ominok A, 1o
OOTPYHTOBYe Ilell MeTOZ AN cuopizHeHmx mpobseM. OcobiuBy yBary mpuzpineHo depoMarHiTHIM
ojliromepHUM cricTeMaMm, KOrTpi Gasyrorobes Ha denasenini ta tpuanrynmeni. [loegmamnma SF-CIS Ta
HSH sene o edexTuBHO cXeMu OMiHKM A, y BeJIMKMX JIAHITFOTONOMIGHIIX MATHITHUX CTPYKTYpPaX.

CroBast miesb, A, JJIS TBEPABIX TeJl M MOJEKYJIAPHBIX CTPYKTYP OOBIMHO OINPeJIeIseTcs KaK SHepIus
HAVHUBITIETO 9IeKTPOHHOIO IIEPeXO0fia ¢ MIHVIMAIBLHBIM HEHYJIeBBIM M3MEHEHVIEM IIOJIHOIO CIIVHA OCHOBHOIO
cocTosEMsA. B farmoil pabore MPUMeHEHD! N-eJIeKTPOHHbIe HOTySMITMPUYECKIIe TIOAXOLI 7l OIeHOK A B
HAHOPAZMEPHIX COIPSDKEHHBIX CHCTEMAX THIA KBAHTOBBIX M MM LEe00pasHbIX cTpyKTyp. Hemocpencr-
BEHHO VICIIOJIB30BAJICH MeTof, Korduryparpiontoro eaavmvopericrrst SF-CIS (oqHoKpaTHbIe BOsOYKAEHIA [0
TUIY CIMH-(UINII) M CHeIMa/ISIPOBAHAS MOAEIb HA OCHOBe CIIMH-raMvuibToHuaHa [arisentepra (HSH).
CpaBHerrie ¢ pesy/ILTATAMI TOUHOL TT-JIEKTPOHHOI TeOPI LA 38/igY MAJIOTO DasMepa [OKA3BIBAET IIPLEM-
nemocTh Tpoctetimieft Bepcrm SF-CIS mms oneHOK A, 9UTO OIpaBIBBaeT IPIMEHEHMe MeTofa I 3amad
porcreersoro Tvma. OcobeHHoe BHUMAHVE YIelteHO GheppPOMATHUTHBIM OJIMT'OMEPHBIM CHCTEMAM, [IOCTPOSH-
HBIM Ha ocHoBe denanermua u TpramryieHa. Coueranue SF-CIS 1 HSH npueogur ¥ addexTuBHON
cxeMe OIeHKHN A, B GONBINKX I1eTIe00pPasHBIX MATHUTHBIX CTPYKTYPaX.
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1. Introduction

Conjugated nanomolecules are an ample
class of molecular systems for nanoelectron-
ics, where, for instance, the well-known gra-
phenic structures (carbon nanoribbons and
quantum dots [1-3]) provide only the most
popular examples of such type systems. As
well known, unusual chemical and physical
properties of conjugated molecules are due to
mobile valence m-electron shells. Among their
key physical characteristics are various en-
ergy gaps (charge gap, spin gap etc. [4, 5]).
The main focus of the present article will be
on the spin gap A, (in usual notation). Here
we will study the conventional spin triplet
gap (the lowest singlet-triplet transition en-
ergy) as well as A, in high-spin molecular
systems of ferromagnetic type.

In the literature, one can find many in-
teresting results for A; in various nano-
molecular and polymeric structures with n-
electrons ([6—14] and many others). Most of
the above cited works are based on the den-
sity matrix renormalization group (DMRG)
technique for ground state properties of 7-
electron subsystems. The latter are nor-
mally considered within the many-electron
semiempirical Pariser-Parr-Pople (PPP) ap-
proximation. While DMRG is a remarkable
high-level approach for treating electron
correlation effects, it is a highly specialized
and rather difficult method to apply
broadly. Therefore, it makes a sense to con-
sider the gap problems within conventional
approximations of quantum chemistry, such
as not too complicated configuration inter-
action (CI) models. Thus, the main purpose
of the paper is to explore and examine an
easily-implemented CI-based method for ob-
taining practical estimates of spin gap A, in
large conjugated molecules.

2. Models within the spin-flip
methodology

As familiar from quantum chemistry of
large systems, the normal truncated CI
models for ground state wave functions are
relatively inefficient due to lacking size
consistency and related important features
(asymptotic additive separability of energy
etc.) [15]. However, there is a set of limited
CI models for which the size consistency re-
quirement is satisfied in a certain special
sense. Particularly, the configuration interac-
tion singles (CIS) method for excited state is
of this type. For excited states, the size con-
sistency can be naturally understood as the
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size intensive property in the following
meaning: asymptotically (with a full separa-
tion into fragments) low-lying excitation en-
ergies of the combined system must be the
same as those of individual fragments [15,
16]. The fact that the wvariational CIS is
size-consistent for excitation energy, was
suitably used in Ref. [17] where the so-
called spin-flip CIS (SF-CIS) method was
proposed as a convenient scheme for esti-
mating molecular excitations [18]. The
state-of-art overview of SF models and their
generalizations is given in [19].

In the SF-CIS approach, when consider-
ing excitations from a singlet ground state,
one must start from the Hartree-Fock spin-
triplet reference determinant. Then appro-
priate CIS-like computations are carried out
in such a way that in each singly excited
electron configuration one azimuthal spin-
up convert to a spin-down, thus making
spin flip. Notice that similar spin-flip pro-
cedures were known long ago in the quan-
tum theory of magnetism where a ferromag-
netic ground state (all spins up) was taken
as the reference state resulting in the famous
Bethe ansatz for an antiferromagnetic state
[20]. In quantum chemistry, the spin-flip
techniques were employed previously for spe-
cial semiempirical m-electron models in [21].
Recently we studied by SF-CIS, excitation
spectra in several high-spin nanosized =-
structures of a ferromagnetic type [22].

Now we revisit the spin transition problem
at the traditional m-electron level of treat-
ment, providing a wider set of issues. We
need not recapitulate here in detail our ear-
lier discussion of the SF-CIS basic points in
[22, 23]. Recall only that for closed-shell mo-
lecular systems the simplest SF-CIS scheme is
based on wave functions of the compact form

[PSF-CISy = %' 1(k) D). (1)
1<k<N

Here |®) is an N-electron reference deter-
minant, and one-electron operator T trans-
forms |®) into a superposition of virtual
excitations (singly excited configurations).
The spin-flip context is specified by putting
|®) = |®EOHF) where the abbreviation ROHF
(restricted open-shell Hartree-Fock) shows
the type of the chosen reference determi-
nant, and S= 1 specifies its spin triplet
value. Together with this, T is taken as fol-
lows:

T=1s_, (2)

Functional materials, 28, 4, 2021
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Table 1. Spin gap A, (in eV) in typical me-
dium-size PAHs by FCI (or DMRG), SF-CIS
and EHF. The FCI and DMRG spin gaps
are taken from [26]

PAH FCI SF-CIS EHF
(DMRG)
Naphthalene 2.55 2.77 2.68
Diphenylene 1.95 2.11 2.14
Anthracene 1.71 1.72 2.03
Tetracene 1.22 1.27 1.62
Pyrene 1.86 1.95 2.16
Chrysene 2.34 2.52 2.39
Perylene 1.58 1.63 1.92

with ¢ being a spin-free transition operator and
s the spin-flip (lowering spin) operator. In
term of standard single-electron spin eigenkets
lo) and |B) we have the dyadic representation:
s = |B){0). Transition operator t and corre-
sponding transition energies can be easily ob-
tained from an appropriate eigenvalue matrix
equation expressed in terms of atomic orbital
(AO) quantities (for detail see Eq. (Al) in
[21]). It is significant that our computational
scheme can be implemented using these one-
electron matrices in AO basis sets, thus econo-
mizing m-calculations (no four-index arrays, no
AQO to MO transformation, ete.).

3. Accuracy evaluation of spin
gap within SF-CIS

As usual, in order to test accuracy of
approximate m-electron models we will com-
pare between spin gaps of the exact n-
method (m-electron full CI scheme, or simply
FCI) and those of the SF-CIS method. The
FCI results are available only for relatively
small m-systems (in fact, having less than
20 n-centers). For larger polycyclic aromatic
hydrocarbons (PAHs), we can rely on high-
quality DMRG n-results from [7, 8, 12].
Furthermore, for a more complete account we
add here the A, results obtained by the ex-
tended Hartree-Fock method (EHF) [24, 25].
For the numerical EHF calculations we used
the appropriate matrix algorithm from [25].
In this section all our SF-CIS and EHF n-
electron data are related to the same PPP
m-parametrization scheme which was used in
[7, 8, 12, 26] for finding the FCI and
DMRG values of A,.

A summary of obtained information is
presented in Table 1. As it follows from the
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Table 2. Spin gap AJ[TB] and AJ[SF-CIS] (in
eV) in the Clar-types PAHs and associated
hole (antidot) structures; N is a number of
carbon atoms

Ne Structure N | AJ[TB] | A[SE-CIS]
1 168 1.08 1.99
2 216 0.94 1.65
3 210 1.14 2.13
4 210 077 1.12
(acenic pore)

table, SF-CIS and EHF provide in whole the
results which are quite close to those in FCI or
DMRG approaches. At the same time, EHF can
be not so good for large-scale systems, and the
tetracene and perylene molecules are of this
kind. Our supplementary computations con-
firm a low quality of the EHF estimations for
A, in extended conjugated molecules.

For instance, consider one m-structure re-
lated to the modeled =zigzag graphene
nanonribbons (ZGNRs). This is the 34-cen-
ter [3]JZGNR system with 5 subunits which
was carefully examined within DMRG in [8]
(see therein Table 2). Together with our
data we have the following A, values in this
[3] ZGNR problem:

AJDMRG] = 0.293, AJSF-CIS] = 0.883, (3)
AJEHF] = 1.034.

In above, the too poor AJEHF] value re-
flects the mentioned drawback of EHF,
namely, its size-inconsistency which occurs
for all EHF electronic energies, including
excitation energies. By this [3] ZGNR exam-
ple we can also suggest that just the size
consistency in SF-CIS (recall Section 2) al-
lows to obtain the sufficiently reasonable A,
estimates.
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As an additional check of the SF-CIS cal-
culations, we as well report AJSF-CIS] for
two polymeric systems, and compare them
with the respective DMRG results from [7,
12]. In the cited papers, the extrapolated
estimates of were obtained from calcula-
tions of large-scale oligomers associated
with linear polyacenes (LPA) [7] and arm-
chair polyacenes (APA) [12]. We have calcu-
lated the spin gaps for oligomers of the
same structural types with a various num-
ber of acene subunits (up to 15 subunits),
and found the exptapolated values to be
0.56 eV (in LPA) and 2.69 eV (in APA). It
should be compared with the extrapolated
DMRG values 0.52 eV [7] and 2.55 eV [12],
respectively. We see that in the considered
large-scale m-structures, the simplest SF-CIS
scheme produces quite realistic spin-gap val-
ues, and this result brings certain hope that
the SF-CIS technique will be realistic in case of
more complex structures for which the DMRG
approach cannot be practically executed.

3. SF-CIS computations for
conjugated nanomolecules

As the first type of the large systems
studied in this section we consider the so-
called Clar type PAHs. They correspond to
the fully-benzoid conjugated systems inves-
tigated in the vast number of papers; for
more detail see the original review article
[27] dedicated to the “clarology”™ (the term
is from [27]) for these and related struc-
tures. Simply speaking, the Clar PAHs as
extremal fully-benzoid systems are the
PAHs which have a maximal number of ben-
zene subunits; the latter are linked with all
adjacent benzene subunits only by simple
n-bonds. The most trivial examples are
polyphenyls. By their condensation, one can
produce the two-dimentional structures
such as systems 1, 2 and 8 displayed in
Table 2. Notice that much efforts are di-
rected to synthesize the real large PAHs of
this type [2, 3, 28—-31]. In Table 2 we also
include the modified Clar-type
megamolecule having a hole in the carbon
backbone (systems 3 and 4). The "antidot™
structures of this kind had been known to
experimentalists [32].

To treat the above structures we make use
of the standard m-parametrization applied in
most our recent works ([22] and others): all
resonance integrals f, o oc bonds are equal
to By = —2.4 eV, and two-center Coulomb in-
tegrals v, are due to Ohno, with the one-cen-
ter integral ¥y =v,, = 11.18 eV. This n-para-
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metrization and the normal regular geome-
try of carbon backbones (with 1.4 A for all
CC bond lengths) differ insignificantly from
the scheme applied in the above cited papers
on DMRG calculations.

Table 2 summarizes the computed data
for AJSF-CIS] together with the simplistic
TB estimations AJTB] (i.e., the Hueckel
HOMO-LUMO orbital gaps with using the
above defined ;). It should be noted that TB
still remains in use for elementary evalu-
ations of UV spectra in large PAHs [33]. Nev-
ertheless, TB should be used very restric-
tively, that is, only for m-systems with small
correlation effects. The Clar structures in
Table 2 are just of this type, and that is why
we observe that the qualitative picture in TB
is practically the same as in SF-CIS. Of
course, the quantitative results are markedly
different in SF-CIS and TB.

Next, we consider examples extracted
from two families of well-known armchair
carbon nanotubes (ACNTs). Short ACNTSs
are close cousines to the so-called nanobelts
[34]. As established in [35, 36], the TB en-
ergy gap in finite-length ACNTs depends
crucially on nanotube length L. This L can be
identified with a number of cis-polyene cycles
(lossing hydrogen atoms) which are trans-
verse to the tube axis in ACNT. According to
[385, 36], in ACNTSs the TB orbital energy gap
(and thus A,)) is zero if L = 8k — 1, where £ is
a positive integer. This family will be catego-
rized here as [3k —1] ACNT. If L takes an-
other values, say L =3k (ACNT family in
our notation), then the TB gap is generally
not zero while the gap disappears all the
same in the large k limit. In other words, at
the TB level the spin gap vanishes for any
infinite length ACNT.

Turn now to SF-CIS as a more advanced
and reliable approach. For definiteness, take
(4,0) CNTS, that is the ACNT produced by
a condensation of L cyclohexadecaoctaene
moieties. For instance, when L = 2 the cy-
clohexadecaoctaene(16-cyclopolyene) is
formed, and L =3 gives [4]cyclopara-
phenylene. In the case L =4 we have the
stucture of the cyclo[10]phenacene
(nanobelt) synthesized recently in [37].

The results for AJ[SF-CIS] (in eV) are
presented in Fig. 1. The upper plot line is
related to the more stable [8k] ACNT fam-
ily, and the lower plot line shows corre-
sponding data for the less stable ACNT fam-
ily. Nevertheless, in the both cases the spin
gap reaches practicaly the same nonzero as-
ymptotic limit at large L (at zero limit of

Functional materials, 28, 4, 2021
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Fig. 1. The representative small [4]JACNT
(the left panel) and spin gap dependences as a
function of the ACNT inverse length 1/L for
[82] ACNT family (in blue) and [3F — 1]
ACNT (in red) family.

1/L), namely, AJSF-CIS] = 0.12 eV, in evi-
dent contrast to the above given A JTB] = 0.
We see again that one cannot fully rely on
the TB estimation even at the qualitative
level if large-scale (or infinite) systems are
involved.

4. Spin gaps and excitations in
conjugated polyradicals

Now we turn to various organic struc-
tures possesing a high-spin ground state.
Such systems are often named single-mole-
cule ferromagnets [38], and this topic keeps
actively developing (see recent review works
[39-41]). In the last years, the systems
based on phenalenyl (PhNal) radical and tri-
angulene (TrGl) biradical (Fig. 2), have at-
tracted special attention [22, 29, 42-46].
Notice also that within the context of or-
ganic ferromagnet materials, the stuctures
of similar type have first appeared in semi-
nal papers [47, 48].

We start our study from the phenalenyl
polyradicals. The monomeric PhNal has
been previously studied experimentally and
computationaly at various theoretical levels.
For the lowest optical (doubet-doublet) tran-
sition energy A,,, the experimental value
kopt[exp] = 2.3 eV and the ab initio value
kopt[theor] = 2.1 eV were given in [49]. It
can be compared with our semiempirical
computations here: kopt[FCI] = 2.22 eV and
App:[SF-CIS] = 2.11 eV. So, we hope that SF-
CIpS will provide reliable results for related
phenalenyl-based oligomeric structures.

First, we directly treat linear (chain-like)
oligomer systems (PhNal), (n =+7) at the
SF-CIS level and then juxtapose the results
with those of a pertinent spin model of the
well known Heisenberg type. Let us begin
with the dimer (PhNal);. Because the
ground state of the pristine PhNal is spin-
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PhNal TrGl (PhNal),
Fig. 2. Magnetic molecular subunits

phenalenyl and triangulene, and phenalene
dimer (PhNal),. The star signs in PhNal and
TrGl indicate the position via which the
subunits are linked to produce oligomeric
high-spin chains.

doublet (S = 1/2), possible electronic states
of (PhNal), are singlet, triplet and other
high-spin (very excited) electronic states. Due
to the Lieb-Mattis-Ovchinnikov rule [48, 50]
for alternant (bipartite) PAHs, the ground
state of the dimer (see Fig. 2) is the triplet
state, so that the lowest singlet state lies
above the ground triplet one. In the case of
two weakly coupled fragments (as in our
dimer), the energy difference between these
states is but the usual exchange integral
Jorr = Eg—; — Eg—p- Specifically, we naturally
predict the negative J,,, = —0.1709 eV at the
SF-CIS level.

The next point that is needed to discuss
is the SF-CIS results obtained for not so
long oligomer chains (PhNal), with n = 2+7.
Equipped with the results we will show
below the usefulness of ,;; and the related
spin chain models (even with larger n). As
to the latter, we make a quite reasonable
assumption that owing to a weak coupling
between PhNal fragments, the involved
polyatomic chain (PhNal), can be approxi-
mately reduced to the standard (nearest-
neighbor) spin 1/2 linear chain with =n
spins. The chain can be treated by the iso-
tropic Heisenberg’s spin Hamiltonian (HSH)
of the same normal kind which is typically
used; e.g., see [51]. In our case, all nonzero
exchange integrals in the associated HSH
are identified to the above given J,.. The
relevant HSH results together with the di-
rect SF-CIS data are displayed in Table 3. In
the second column of this table we present
the model analytic expressions, and compare
numerical HSH and SF-CIS data in the two
last column of the table. It is clearly seen
that the HG model leads to quite satisfac-
tory results for the spin gap in phenalenic
ferromagnetic chains. This fact allows one
to treat (PhNal),, with a large n by the more
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Table 3. Comparison between ferromag-
netic spin gaps (in eV) obtained in the
spin-flip approach SF-CIS for (PhNal), and
in the HSH model for open linear spin 1/2
chain with Jeff =-0.1709 eV

n = AJHSH] AJHSH] | AJ[SF-CIS ]
28 (analyt.) (numb.)

2 ~J s 0.1709 0.1709
3 —J /2 0.0854 0.0812

4 (2 - 2)J,,,/2 0.0501 0.0477

5 (V5 = 3)J,,/4 0.0326 0.0319

6 (8 - 2)J,,/2 0.0229 0.0231

7 | (cos[n/7] = 1)J 4 | 0.0169 0.0176

simple (at least in this case) HSH technique,
and invoke also the appropriate general re-
sults of the the quantum theory of magnet-
ism (e.g., see review [52]).

In a similar manner, more complex trian-
gulene feromagnetic chains can be studied.
In this case the monomeric triangulene
molecule (see Fig. 2) possesses the triplet
ground state in concordance with the Lieb-
Mattis-Ovchinnikov rule. With the adopted
topology of linking monomers (see Fig. 2) the
same rule guarantees the polymeric (TrGl), to
be a ferromagnetic spin 1 chain (with local
spin s = 1 for each monomeric unit TrGl).

We start with the monomer TrGl and
dimer (TrGl);. The good-quality ab intitio
computation of the pristine triangulene
molecule gives the following lowest triplet-
singlet gap: A, = 0.703 eV [53], and again
in our semiempirical computations we ob-
tain a quite comparable value: A J[SF-CIS] =
0.815 eV. For estimating ¢ in the investi-
gated ferromagnetic spin 1 chain we take
the dimer (TrGl), and compute for it the
half-difference (Eg—1 = Eg—3)/2=J o4y
Within SF-CIS we find J,,, = -0.04218 eV.

The relevant results oif the comparison
between the direct SF-CIS computations of
(TrGl), (n = 2+) and the model HSH treat-
ment are displayed in Table 4. In this table
analytic expressions for A; are omitted since
in our open spin 1 chains all A, are doubled
in respect to those of the relevant spin 1/2
chains. For instance, A; = =, in the spin
1 chains with n =3, and A, = (V2 - 2)J
for n = 4. This fact is in conformity with
the known results [54, 55] concerning one-
magnon transitions (the magnon energy is
proportional to a local spin value s).
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Table 4. Comparison ferromagnetic spin
gaps (in eV) obtained in the spin-flip ap-
proach SF-CIS for (TrGl), and in the HSH
model for open linear spin 1 chain with
Jopp = —0.0422 eV

e

n=_5 A JHSH] AJSF-CIS ]
2 0.0842 0.0842
3 0.0422 0.0419
4 0.0247 0.0251
5 0.0161 0.0169
6 0.0113 0.0122
7 0.0083 0.0093

From Table 4 we see that for the spin 1
chains the predictions of A; by HSH are also
sufficiently close to those by SF-CIS. Thus,
the practical upshot of the above calcula-
tions is that one can avoid computations on
long oligomeric chains, and instead must
calculate by quantum chemistry only a cer-
tain dimer to estimate J,:. for the given
chain. Then, simple HSH computations pro-
vide all needed lowest excitation energies of
the given chain composed of weakly coupled
local spins. In particular,

AJHSH] = (cos [n/n] — 1) opp, 4)
for open linear spin 1/2 chains, and
AJHSH] = (cos[2n/n] — 1) 4y (5)

for cyclic (closed) spin 1/2 chains. Natu-
rally, Eq. (5) is exactly the energy of the
lowest one-magnon transition (see again Eq.
(16) in [54]); for more details how to simply
compute the magnon spectrum see Appendix to
the present paper. We add also that by modi-
fying spin-flip CI methods we can directly gen-
erate AJHSH] for rather general ferromagnetic
spin 1/2 networks, but algorithmic details are
beyond the scope of our discussion.

5. Conclusion

Summing up, we stress again that cur-
rently developed techniques for synthesiz-
ing organic materials allow to fabricate
complex nanomolecules and oligomeric
structures with unusual electronic and spin
properties. In the present paper we have
investigated the structures of this type by
the spin-flip quantum chemical machinery
which was applied previousy for similar
purposes in [22]. Now we have demon-
strated that SF-CIS permits to reasonably
describe conjugated nanomolecular struc-
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tures containing up to several hundreds
carbon atoms.

Importantly, in the case of long ferro-
magnetic chains with weakly coupled frag-
ments, one can invoke a combined computa-
tional scheme in which only the selected
high-spin fragments (monomers and dimers)
are quantum-chemically computed (at the
SF-CIS level), so that a subsequent analysis
of long oligomeric or polymeric structures
is easily performed by the conventional He-
isenberg spin-Hamiltonian theory. Further-
more, we hope that the spin-flip approach
we used may be further improved, without
being too complicated, thus providing even
more accurate estimates of large-scale mo-
lecular spin properties.

Apendix. Computations of
one-magnon gap

Here we give convenient expressions for
computing one-magnon spectra of the ferro-
magnetic Heisenberg spin 1/2 model. The
corresponding Hamiltonian, H, can be put
into the customary form [51] as follows:

H =2 J,(8,8, - 1/4), (6)
1<a, b<n

where S, is a spin operator localized on the
site a of the given molecule or lattice; ¢/, is
defined as a two-site exchange integral for
the specified pair (a,b). Generally all J; are
nonzero (and J,, = 0 by definition).

As an intitial state, the Bethe-like refer-
ence state |0) = |T...T)) (with all spins up) is
taken, so that (O|[H |0 ) = 0 is the energy of
the ground ferromagnetic state. To obtain
magnon excitations, one generates basis
vectors {la|)}1<,<, With a single spin-down
electron at each site a. In this basis the
Hamiltonian n*n matrix

Hl= ”HaleSa,bSn’ (M

and H,, = (a||HJb|) can be computed by the
simple recipe:

Hy, = _z Joe/2, Hyp=Jdg/2, a#b. ®)

c#*a

Note in passing that in Eq. (8) the re-
quirement ¢ # @ is in fact redundant because
Jye = 0.

Eq. (8) is a suitable form of more or less
known expressions; e.g., Eq. (8) is implic-
itly contained in Eq. (12) from [55] and in
Eq. (11) from [56]. In adddition, we note
that HI' is the matrix which row sums (or

Functional materials, 28, 4, 2021

column sums) are all equal to zero. It pro-
vides the minimum (zero) eigenvalue of HI!l
that is naturally related to the ground
state, so that the second eigenvalue of HI1l
should be identified with AJHSH].

In practice, the most applicable is a
counterpart of the tight-binding approxima-
tion for exchange integrals J,, when only
nearest-neighbor site interactions are taken
into account. Typically, in this scheme each
nonzero J,; is equal to a single prescribed
value J ., so we must set

Jab = Jef}‘Aab s 9

with A = [|A,,|| being the ordinary adjacency
matrix of a topological graph for the stud-
ied structure. In graph-theoretic terms, H,
in Eq. (8) is, within a constant factor, iden-
tical to d,, that is degree (valence) of vertex
a. Then, Eq. (7) can be rewtitten:

Hpyy=~J L/ 2, (10)

where L = ||d,8,, — Ayl is the combinatorial
Laplacian of the given graph. Seemingly,
representation (10) was not noted before,
while some useful applications can be made
of this equation.

Indeed, the graph Laplacians are well in-
vestigated, and many results concerning L,
and thereby HI, may be simply borrowed
from a rich literature, especially the results
about spectral properties of L ([57-60] and
many others). Special attention deserves the
Laplacian second eigenvalue A, which plays
an important role for descriping graph. In
our context this A, is actually the spin gap

AJHSH] = ~J .5/ 2. (11)

In particular, Eq. (4) in the form of A, =
2(1 — cos[n/n]) is presented in [57] and oth-
ers; within quantum communication prob-
lems, the one-magnon spectrum of the open
linear chain is also presented in [61]. It is
remarkable fact that A, = 0 if and only if
the graph is disconnected (no isolated sub-
graphs) [57, 59]. It means that in normal
(connected) structures AJHSH] cannot be
the strict zero (unlike AJTB]). Another in-
tersting inferences pertinent to studying
magnon A, can be drawn from graph theory,
but we will not dwell on these issues here.
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