Funct. Mater. 2022; 29 (2): 193-201.

doi:https://doi.org/10.15407/fm29.02.193

Revealing thermomechanical properties of Al2O3-C-SiC composites at sintering

E.S.Gevorkyan1, V.P.Nerubatskyi1, R.V.Vovk2, O.M.Morozova1, V.O.Chyshkala2, Yu.G.Gutsalenko3

1Ukrainian State University of Railway Transport, 7 Feierbakh Sq., 61050 Kharkiv, Ukraine
2V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The processes of semi-dry pressing of corundum-graphite silicon-carbide materials and the influence of the content of silicon carbide and graphite on the strength characteristics of composites were studied, and the optimal composition of the charge with high physical and mechanical properties has been determined. The most effective antioxidant additives to increase the physical and mechanical properties of carbon- containing composites have been identified. The temperature dependences of the compressive strength of the Al2O3-C-SiC composite have been studied. The main factors of the effect of antioxidant additives on the value of weight loss upon heating to 1000°C of modified corundum-graphite silicon carbide-containing materials obtained on the basis of the developed basic Al2O3-C-SiC composites have been established. The main indicators of the increased stability due to the introduction of various effective binders and antioxidant additives are studied, the mechanism of action of which is manifested both due to the formation of a liquid phase enveloping graphite flakes during sintering, and the synthesis of carbon-containing compounds - silicon carbide, aluminium carbide, aluminium oxycarbides.

Keywords: 
antioxidants, refractory composites, Al2O3-C-SiC system, semi-dry pressing, graphite, silicon carbide.
References: 
1.M.Solc, M.Kotus, E.Grambalova et al., Material Science, 1, 760 (2019). doi:https:// doi.org/10.2478/czoto-2019-0097
 
2. E.S.Gevorkyan, V.P.Nerubatskyi, V.O.Chyshkala, O.M.Morozova, Modern Engineering and Innovative Technologies, 15, 6 (2021). doi:https://doi.org/10.30890/2567-5273.2021-15-02-020
 
3. N.Berrada, A.Desforges, C.Bellouard et al., J. Phys. Chem., 123, 14725 (2019). 
https://doi.org/10.1021/acs.jpcc.8b12554
 
4. E.Gevorkyan, V.Nerubatskyi, V.Chyshkala, O.Morozova, Eastern-European Journal of Enterprise Technologies, 5, 6 (2021). 
https://doi.org/10.15587/1729-4061.2021.242503
 
5. A.Memarpour, V.Brabie, P.Jonsson, Ironmaking & Steelmaking, 38, 229 (2011). 
https://doi.org/10.1179/1743281210Y.0000000005
 
6. X.Yuan, X.Qu, H.Yin et al., Metals, 11, 218 (2021). 
https://doi.org/10.3390/met11020218
 
7. E.Gevorkyan, M.Rucki, T.Salacinski et al., Materials, 14, 12 (2021). 
https://doi.org/10.3390/ma14123432
 
8. A.Kudzma, J.Skamat, R.Stonys et al., Materials, 12, 802 (2019). 
https://doi.org/10.3390/ma12050802
 
9. E.Dodi, Z.Balak, H.Kafashan, Materials Research Express, 8, 4 (2021). 
https://doi.org/10.1088/2053-1591/abdf1a
 
10. A.Peyvandi, P.Soroushian, N.Abdol, A.M.Balachandra, Carbon, 63, 175 (2013). doi: 
https://doi.org/10.1016/j.carbon.2013.06.069
 
11. E.S.Gevorkyan, M.Rucki, A.A.Kagramanyan, V.P.Nerubatskiy, International Journal of Refractory Metals and Hard Materials, 82, 336 (2019). 
https://doi.org/10.1016/j.ijrmhm.2019.05.010
 
12. O.Obiukwu, H.Udeani, P.Ubani,International Journal of Engineering and Technologies, 8, 32 (2016). 
https://doi.org/10.18052/www.scipress.com/IJET.8.32
 
13. A.P.Luz, R.Salomao, C.S.Bitencourt et al., Open Ceramics, 3, 100025 (2020). 
https://doi.org/10.1016/j.oceram.2020.100025
 
14. I.Milosan, T.Bed'o, C.Gabor et al., Applied Sciences, 11, 1625 (2021). doi: 
https://doi.org/10.3390/app11041625
 
15. S.Matei, M.Stoicanescu, V.Bela et al., Advances in Mechanical Engineering, 13, 1 (2021). doi: 
https://doi.org/10.1177/16878140211011888
 
16. E.Gevorkyan, A.Mamalis, R.Vovk et al., Journal of Instrumentation, 16, P10015 (2021). 
https://doi.org/10.1088/1748-0221/16/10/P10015
 
17. A.Riquelme, P.Rodrigo, M.D.Escalera-Rodriguez, J.Rams. Coatings, 10, 673 (2020). 
https://doi.org/10.3390/coatings10070673
 
18. K.Lobach, Y.Kupriiyanova, I.Kolodiy et al., Functional Materials, 25, 496 (2018). 
https://doi.org/10.15407/fm25.03.496
 
19. L.Fernandes, R.Salomao, Materials Research, 21, 3 (2018). 
https://doi.org/10.1590/1980-5373-mr-2016-0793
 
20. E.Gevorkyan, M.Rucki, Z.Krzysiak et al., Materials, 14, 6503 (2021). doi: 
https://doi.org/10.3390/ma14216503
 
21. E.S.Gevorkyan, V.P.Nerubatskyi, V.O.Chyshkala, O.M.Morozova, Modern Scientific Researches, 14, 12 (2020). doi: https:// doi.org/10.30889/2523-4692.2020-14-01-002
 
22. S.Ludwig, V.Roungos, C.G.Aneziris, International Journal of Applied Ceramic Technology, 11, 961 (2014). 
https://doi.org/10.1111/ijac.12328
 
23. N.Liao, Y.Li, J.Shan et al., Ceramics International, 44, 3319 (2018). 
https://doi.org/10.1016/j.ceramint.2017.11.110
 
24. T.Bahtli, V.M.Bostanci, D.Y.Hopa, S.Y.Yasti, Universal Journal of Materials Science, 6, 139 (2018). 
https://doi.org/10.13189/ujms.2018.060501
 
25. K.M.Sevener, J.M.Tracy, Z.Chen et al., Journal of the American Ceramic Society, 100, 4734 (2017). 
https://doi.org/10.1111/jace.14976
 
26. E.Gevorkyan, V.Nerubatskyi, Yu.Gutsalenko et al., Eastern-European Journal of Enterprise Technologies, 6, 41 (2020). 
https://doi.org/10.15587/1729-4061.2020.216733
 
27. V.O.Chyshkala, S.V.Lytovchenko, E.S.Gevorkyan et al., SWorldJournal, 7, 17 (2021). 
https://doi.org/10.30888/2663-5712.2021-07-01-008
 
28. M.Zeraati, K.Tahmasebi, A.Irannejad, J.Nanostruct., 10, 660 (2020). doi: https://doi.org/10.22052/JNS.2020.03.019
 
29. S.Li, H.Cui, Q.Ma et al., Journal of Wood Science, 672, 58 (2021). 
https://doi.org/10.1186/s10086-021-01991-7
 
30. Z.Lewandowski, K.Janta, J.Mazierski, Water Research, 19, 671 (1985). 
https://doi.org/10.1016/0043-1354(85)90074-0

Current number: