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In this paper, a DBN-CER19 model (deep belief network and composite expectile regression) 
is proposed to predict the tensile strength of hot rolled strip. The model takes full advantage 
that the quadratic loss function used by expectile regression can be solved by standard gradient 
optimization algorithm, and that DBN can learn more abstract hidden layer information from 
the underlying data. At the same time, the model combines the CS algorithm (Cuckoo Search) 
to select the number of DBN hidden layer nodes to improve the network structure. In order to 
demonstrate the superiority of this method, we use root mean squared error (RMSE), mean 
absolute percentage error (MAPE) and mean absolute error (MAE)as measurement indicators 
for empirical analysis. The results of the proposed model on the test set are 21.4381, 2.5251and 
13.5035, respectively. The empirical results show that the DBN-CER19 model has higher predic-
tion performance than previous models such as BP neural network(BPNN), quantile regression 
neural network(QRNN), expectile regression neural network(ERNN), and DBN.

Keywords: deep belief network; composite expectile regression; CS algorithm; mechanical 
properties of steel

Прогноз механических свойств горячекатаной полосы на основе DBN и 
композитной ожидаемой регрессии. Сию Хуан, Сяося Хэ, Синь Чжан, Вейган Ли

Предлагается модель DBN-CER19 (сеть глубокого доверия и составная регрессия 
ожиданий) для прогнозирования прочности на растяжение горячекатаной полосы. Модель 
использует то, что квадратичная функция потерь, используемая в ожидаемой регрессии, 
может быть решена с помощью стандартного алгоритма оптимизации градиента, и что 
DBN может получать более абстрактную информацию о скрытом слое из базовых данных. 
В то же время модель объединяет алгоритм CS (Cuckoo Search) для выбора количества 
узлов скрытого слоя DBN для улучшения структуры сети. Чтобы продемонстрировать 
превосходство этого метода, мы используем среднеквадратичную ошибку (RMSE), среднюю 
абсолютную процентную ошибку (MAPE) и среднюю абсолютную ошибку (MAE) в качестве 
показателей измерения для эмпирического анализа. Результаты предлагаемой модели 
на тестовом наборе составляют 21,4381, 2,5251 и 13,5035 соответственно. Эмпирические 
результаты показывают, что модель DBN-CER19 имеет более высокую эффективность 
прогнозирования, чем предыдущие модели, такие как нейронная сеть BP (BPNN), нейронная 
сеть квантильной регрессии (QRNN), нейронная сеть регрессии ожидания (ERNN) и DBN.
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1. Introduction
The prediction of mechanical properties of 

hot rolled strip steel is a very complex metal-
lurgical frontier technology that can provide a 
great impetus to long-term development of the 
steel industry. Since there is a complex and 
defi nite correspondence between the internal 
organization structure, strip composition and 
the corresponding production process that de-
termines the mechanical properties of strip 
steel, it has been a diffi cult problem of concern 
for the steel metallurgical industry to establish 
a prediction model based on the quantitative 
relationship between these process parameters 
to further optimize the mechanical properties 
of steel.

In response to the modeling diffi culties such 
as many infl uencing factors and complex inter-
actions of the steel product performance index 
forecasting problem, researchers have carried 
out numerous related research works. Bori-
sade S.G et al[1]used a polynomial regression 
mathematical model to predict the mechanical 
propertiesand experimentally demonstrated 
the authenticity of the model. Wu et al[2] used 
the MIV method to guide the selection of input 
neurons for the bayesian NN model to estab-
lish the mechanical performance prediction 
model. Khalaj G et al[3] used an artifi cial NN 
model to predict the ultimate tensile strength 
of APIX70 steel and achieved a high prediction 
accuracy. Chou et al[4] used TPSO algorithm 
to optimize BPNN for modeling and optimiza-
tion of yield strength with high computational 
effi ciency and strong robustness. Adel Saoudi 
et al[5]developed an artifi cial neural network 
(ANN)model to predict tensile and impact 
properties of APIX70 pipeline steel based upon 
its chemical composition. Hu[6]constructed a 
mechanical property prediction model for hot-
rolled strip steel based on a deep feedforward 
NN and a convolutional neural network(CNN) 
fused with LeNet.5 and GoogLeNet. Xie Qian 
et al[7] designed a deep learning model to pre-
dict the mechanical properties of industrial 
steel plates based on the process parameters 
and composition of crude steel and applied it 
online in a real steel manufacturing plant.

Compared to the mean regression analy-
sis method, the QR proposed by Koenker[8] 
provides a more comprehensive picture of the 
potential relationships between response vari-
ables and covariates when faced with asym-
metrically distributed or larger scattered data.
Tian et al[9] developed a generalized RBF 
neural network quantile regression model for 
predicting the mechanical properties of hot-
rolled strip steel. Dadabada et al[10] proposed 
a QRNN based on particle swarm optimiza-

tion (PSO)-trained to forecast volatility from 
fi nancial time series. Zanget al[11] extracted 
the higher order features of the data based on 
CNN and further used gated recurrent NN for 
quantile regression modeling to predict the bus 
load values under different quantile conditions 
at any future moment. Li et al[12] proposed a 
long short-term memory NN (LSTM) quantile 
regression probability density prediction meth-
od to predict wind power, wind power interval 
and probability distribution of wind power. 

For the detection loss function of quantile 
is not differentiable at zero, Newey and Pow-
ell[13] proposed the idea of expectile regres-
sion, where the detection loss function of ex-
pectile is everywhere differentiable, which can 
not only attenuate the infl uence of outliers on 
statistical inference and have the advantages 
of both mean regression and quantile regres-
sion, but also can characterize the whole dis-
tribution more comprehensively while having 
higher estimation effi ciency. Hu et al[14] in-
troduced an expectile-based VaR risk measure 
tool to obtain a risk measure based on a semi-
parametric conditional autoregressive model, 
using expectile to estimate the model param-
eters, which makes fuller use of information 
and can better measure Chinese stock market 
risk. Jiang et al[15] proposed the ERNN model, 
which adds a NN structure to the expectile re-
gression method, and since the expectile model 
uses an asymmetric square loss function, it can 
be easily estimated by standard gradient-based 
optimization algorithms and directly outputs 
the conditional expectation function, inherit-
ing the ability of NN to handle nonlinear prob-
lems. Jiang[16] proposed a ERNN model with 
an increased penalty term, which can fl exibly 
express the nonlinear relationship between 
the explanatory and response variables, and 
can completely examine the variation pattern 
of the conditional distribution of the response 
variables and comprehensively improve its 
predictive capability. Liu et al[17] proposed a 
class of semi-parametric variable coeffi cient 
composite expectile regression models, while 
establishing the large sample nature of their 
estimation. Numerical simulations show that 
the obtained estimates are more effective due 
to the consideration of information from mul-
tiple expectiles.

Currently, deep learning is successfully ap-
plied in various fi elds ranging from natural 
language recognition, environment perception 
to human behavior recognition with its effi cient 
feature extraction ability and powerful model-
ing capability. As one of the widely used deep 
learning methods, DBN is able to automati-
cally learn and extract essential features from 
massive data using its deep structure from bot-
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tom-up. And it can largely solve the problems 
of shallow learning and improve the prediction 
performance by the feature extraction capabil-
ity of Restricted Boltzmann Machine (RBM). 
Bao et al[18] proposed an improved deep learn-
ing structure based on DBN and support vec-
tor machines (SVR) for traffi c prediction under 
severe weather. Yu et al[19] combined symbolic 
and classifi cation rules with deep networks and 
proposed a knowledge-based deep trust network 
model (KBDBN) with good feature learning 
performance to predict the surface roughness 
of workpieces. Xing et al[20] proposed a tem-
perature-based DBN in which temperature is 
considered in the learning process of DBN, and 
the introduction of temperature parameters 
improves the learning ability of DBN by chang-
ing the transfer function of neurons and activa-
tion conditions. Abdel-Zaher et al[21] proposed 
a computer-aided diagnosis scheme for breast 
cancer detection based on DBN, which provided 
an effective classifi cation model for breast can-
cer.

When constructing DBN models, the choice 
of network structure and the number of hid-
den layers have a great impact on the predic-
tion results of model. However, the network 
structures of DBN models are commonly ob-
tained empirically or through time-consuming 
multiple tuning of parameters. In this paper, 
we study a DBN composite expectile regres-
sion model optimized with the CSalgorithm 
and use the model for regression prediction of 
steel mechanical properties. The model fully 
applies the advantage that the quadratic loss 
function used in the expectile regression can be 
used to solve the model with standard gradient 
optimization algorithms, and the feature that 
DBN can continuously learn from input data 
to discover more abstract hidden layer infor-
mation. Further, the number of DBN hidden 
layer nodes is selected using the CS algorithm 
to improve the network structure. Finally, the 
DBN model with optimal structure is used for 
feature extraction and regression prediction 
of steel mechanics data. The empirical results 
show that the improved DBN composite expec-
tile regression model proposed in this paper 
outperforms prediction models such asBPNN, 
QRNN, ERNN and DBN.

2. Composite Expectile regression and 
DBN model

2.1. Composite Expectile regression
Newey and Powell[13] established the asym-

metric quadratic loss detection function based 
on the l2  parametric in 1987 and proposed the 
idea of expectile regression: the overall distri-

bution of the dependent variable is estimated 
by regressing the independent variables on the 
conditional expectile of the dependent variable 
to obtain a regression model based on all ex-
pectiles.It is a one-to-one mapping relationship 
with the quantile, which makes it inherently 
similar to the quantile and can give a complete 
portrayal of the conditional distribution. The 
computational advantage of the squared coef-
fi cient in the loss function makes the expectile 
have better properties than the quantile. Spe-
cifi cally, for a random variable Y , its   -expec-
tile can be obtained by optimizing the following 
expected loss function:

 Expectile arg E Y vY v R
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ëê
ù
ûúÎ

min ,  (1)
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where  Î ( )0 1,  is the expectile condition, 
which determines the degree of asymmetry of 
the loss function. E�⋅éë ùû  denotes the expectation 
operator, and u is the residual value of Y v- �.

Consider the explanatory variable 
X x x xi i i ip= ( , ,..., )1 2 , p represents the dimen-
sionality, and Y  is the response variable, as-
suming that the functional relationship be-
tween X  and Y  can be expressed as:
  Y f X= +( , ) ,    (3)
where f ⋅( )  is the nonlinear function,   is the 
parameter to be estimated, and   is the error 
term. The corresponding empirical loss func-
tion is defi ned as:
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where N  is the sample size, f xi,( )  is the 
conditional expectile value at different θ lev-
els, and   is the coeffi cient related to  , 
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Liu and Zhou[22] proposed the composite 
expectile regression and proved that the com-
posite expectile regression has good statistical 
properties relative to the expectile regression.
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We can solve the parameter problem by 
minimizing.

2.2. Deep Belief Network
Over the past few decades, deep neural 

networks(DNN), inspired by the structure 
of the brain, have been used in a wide range 
of practical problems. The DBN proposed by 
Hinton et al[23], which consists of a stack of 
multiple RBMs, combines the powerful learn-
ing capability of DNN with the interpretability 
of inference-based processes and is considered 
one of the most effective DNN.

A DBN is a feed-forward NN with a deep 
structure, which consists of an input layer, 
multiple hidden layers and fi nally an output 
layer. The input layer receives the input data 
and transmits the data to the hidden layers to 
complete the learning process. The hidden lay-
ers are created by several stacked RBMs, thus 
forming a network capable of capturing under-
lying patterns and invariants directly from the 
input data.

RBM is an undirected graph model with a 
bipartite graph structure, and a typical RBM 
model topology is shown in Fig. 1.

The observable and hidden layers are used 
to represent the observable and hidden vari-
ables in the RBM . The observable and hidden 
layers are fully connected by symmetric undi-
rected weights, but there is no connection be-
tween nodes in the same layer. The RBM is an 
energy-based model with weights and biases 
that determine the energy of the joint confi gu-
ration of the observable and hidden layer nodes 
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Assume that I = {a,b,W}  is the RBM model 
parameters, v  is the output of the visible layer, 
h is the output of the hidden layer, W  is the 
weight matrix between the hidden layer and 
the visible layer, a  is the bias vector of the vis-
ible layer, and b is the bias vector of the hidden 
layer.  vi is the output value of the i-th visible 
neuron, hj is the output value of the j-th hidden 
neuron, ai is the bias of the i-th visible neuron, 
bi is the bias of the j-th hidden neuron, and wij 
is the weight of the edge between the i-th vis-
ible neuron and the j-th hidden neuron in the 
RBM. m is the total number of neurons in the 
visible layer and n is the total number of neu-
rons in the hidden layer.

The joint probability distribution p v h,( )  of 
the RBM is defi ned as:
  p
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where Z  is the normalization factor, often re-
ferred to as the partition function. The condi-
tional probability of each observable and hid-
den variable in a RBM is described as:
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where p hj =( )1 | v  is the activation probabil-
ity of the j-th hidden layer neuron, p vi =( )1 | h  
is the activation probability of the i-th vis-
ible neuron,   is the logistic function, and 
 x e x( ) = +( )-1 1/ .

Fig.1. A constrained Boltzmann machine with 7 
variables
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The DBN consists of multiple RBMs stacked 
from bottom to top, with the hidden layer of the 
l  -th RBM serving as the observable layer of 
the l +( )1  -st RBM. A typical DBN structure 
model is shown in Fig. 2.

The joint probability of all variables in DBN 
can be decomposed as:
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where p l lh h( ) +( )( )| 1  is a Sigmoid-type condi-

tional probability distribution:
  p l l l l lh h a W h( ) +( ) +( ) +( )( ) = +( )| ,1 1 1   (14)

where  ⋅( )  is the Logistic function, al  is the 
bias parameter, and W l+( )1  is the weight pa-
rameter.

2.3. Composite Expectile Regression 
Based on DBN

DBN can continuously learn from input data 
to discover more abstract hidden layer informa-
tion, while the layer-by-layer pre-training of 
RBM has the feature of producing very good 
initial values of parameters. In order to fully 
apply the quadratic loss function used in the 
expectile regression, which can be solved by the 
standard gradient optimization algorithm, and 
the advantage that multiple expectile regres-
sions can improve the effi ciency of parameter 
estimation, we propose a prediction model(DBN-
CER) combining DBN and composite expectile 
regression, and use DBN as the nonlinear mod-
el at f ⋅( )  in
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where † a b W= { , , }  is the parameter of the 
model, N  is the number of samples, and for 
a given K , let k
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k
 be the k  -thexpectile value of 

ij i i ijY f x= - ( ), . g xi k
,( )  is the conditional 

expectile value of the DBN prediction model at 
different   levels.

3. Solution Algorithms
The design of the network structure is a key 

issue in the application of DBN.Here we use 
a swarm intelligence optimization algorithm-
CS algorithm proposed by Prof. Xin-She Yang 
and S. Deb[24] at the University of Cambridge, 
UK, to fi nd the optimal number of hidden layer 
units.The training process of DBN prediction 
model can be divided into two phases: layer-
by-layer pre-training and fi ne-tuning.First, the 
underlying RBM is unsupervised pre-trained 
by the Contrastive Divergence(CD) algorithm 
to obtain highly abstract reconfi guration fea-
tures and better initial values of parameters.
The learned reconstructed features are then 
used as the input of the DBN prediction net-
work, and the BP algorithm is used to perform 
supervised fi ne-tuning on the labeled samples, 
and then a parameter-sharing DBN prediction 
model is obtained to fi t the output.

3.1. Unsupervised pre-training and 
fi ne-tuning of DBN

The training process of DBN prediction 
model is divided into two phases: pre-training 
and fi ne-tuning.

The fi rst phase is the forward-stacking RBM 
learning process: unsupervised layer-by-layer 
learning is used to initialize the parameters of 
the NN. As shown in Fig. 3, in order to adjust 
parameters such as weights and biases of the 
network, greedy pre-training by unsupervised 
means is required in the fi rst phase, and the 
unsupervised learned model parameters are 
used as the initial values of the supervised 
learning model to provide a priori knowledge 
of the input data for the subsequent learning 
process in phase 2. 

In 2002, Hinton[25] proposed the CD algo-
rithm, a fast learning algorithm for RBM. In 
the CD algorithm, the probabilities of all hid-
den variables are fi rst calculated using (11), 
and based on this distribution, a hidden vec-
tor is sampled from it by the Gibbs sampling 

Fig. 2. A typical DBN model structure
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method. Then, based on this hidden vector, the 
probabilities of the observable variables are 
calculated using (12), and based on this distri-
bution, the input vector of the visible layer is 
reconstructed by Gibbs sampling again. This 
mapping and reconstruction process between 
the visible and hidden layers is repeatedly per-
formed, and the values of weights a, b and W 
are continuously updated during each recon-
struction. The update criteria for each param-
eter are:
  D = á -á( )ñ ñW e v h v hij i j data i j recon ,   (16)

  D = á -á( )ñ ña e v vi i data i recon ,  (17)

  D = á -á( )ñ ñb e h hj j data j recon ,   (18)

where e  is the learning rate and e Î ( )0 1,
. á⋅ñdata  denotes the mathematical expectation 
defi ned by the input dataset and á⋅ñrecon  denotes 

the mathematical expectation defi ned by the 
model after a one-step reconstruction.

Phase 2 is the backward fi ne-tuning learning 
process of DBN: global fi ne-tuning of network 
parameters using the back-propagation algo-
rithm.As in Fig. 4, after each RBM is trained 
layer by layer, a regression layer is added to 
the top of the resulting DBN as the output lay-
er, and then the weights of the entire network 
are fi ne-tuned using the BP algorithm.Starting 
from the last layer of the DBN, the model pa-
rameters are fi ne-tuned to the previous layer 
using known labels, and then the model param-
eters are further optimized globally.For the re-
gression problem, the top layer of the network 
is generally chosen as the regression layer with 
only one node. This avoids the disadvantages of 
BP algorithms that tend to fall into long train-
ing timesandlocal optimum due to the random 
initialization of the weight parameters, and 
not only improves the performance of the mod-
elwhile speeding up the convergenceof the tun-
ing phase.

3.2. CS optimized DBN structure
The research team of Bengio[26] proved 

after extensive experiments:DBNcontaining 
multiple hidden layers are more effective than 
single hidden layer networks.In another paper, 
Bengio and Larochelle[27] further elaborated 
on this issue based on a series of experimental 
results.The results show that the fi tting effect 
of the DNN model increases as the number of 
hidden layers increases. However, when the 
number of hidden layers is increased to more 
than 4, the fi t of the model weakens and the 
generalization performance decreases. The un-
supervised pre-training process has also been 
shown to contribute to the optimization of deep 
structure.Therefore, we choose the DBN struc-
ture with 3 RBMs here. The number of hidden 
layer neurons also affects the performance and 
fi tting ability of the model.If the number of hid-
den layer neurons is too small, the model has 
diffi culty learning useful features and cannot 
fi t the data effectively. If the number of hidden 
layer neurons is too large, the model tends to 
be overfi tted.Moreover, the more the number of 
hidden layer neurons, the more parameters the 
model needs to calculate, leading to a longer 
training process. Therefore, selecting the right 
number of hidden layer neurons is a key step in 
building the network model.

Intelligent optimization algorithms are a 
class of meta-heuristic optimization algorithms 
inspired by biota in nature and summarized 
with powerful computational, optimization-
seeking capabilities.With its universal applica-
bility it is widely used for network structure de-
sign and parameter optimization problems in 
NN.Among the many intelligent optimization 

Fig. 3. Layer-by-layer pre-training process for 
DBN

Fig. 4. Pre-training and fi ne-tuning of DBN
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algorithms, the CS algorithmis widely used in 
practical problems because of its simple struc-
ture, easy implementation, few parametersand 
good search performance (easy convergence to 
global optimum and fast convergence, excellent 
search path).Chen et al[28]proposed a proton 
exchange membrane fuel cell (PEMFC) degra-
dation prediction method based on wavelet NN 
and CS algorithm, which greatly improved the 
prediction accuracy of PEMFC.Preeti Malhotra 
et al[29] used the CS algorithm to optimize a 
hybrid model combining discrete cosine trans-
form (DCT) and principal component analysis 
(PCA) to improve the accuracy of face recogni-
tion and further optimize the face recognition 
system.Yang et al[30]combined the CS algo-
rithm with fi nite element analysis to propose a 
new method for optimizing the positioning lay-
out of sheet metal fi xtures based on the “N-2-1” 
positioning principle.

The CS algorithm is based on the parasitic 
incubation behavior of cuckoos and simulates 
the biological behavior of cuckoos searching for 
the optimal host nest to lay their eggs, this nest 
representing the new or better solution. In ad-
dition, to simulate the cuckoo’s nest search, the 
algorithm improves the optimal location based 
on the Lévy fl ight path principle rather than a 
simple isotropic random wander.The CS algo-
rithmsets up three ideal states as follows:

(1) Cuckoos lay one egg per generation at a 
time and hatch randomly in 1 nest.

(2) A greedy selection strategy. Cuckoos al-
ways retain the best nest as a host until a bet-
ter nest is found, and the nest most suitable for 
egg-laying will be retained for the next genera-
tion.

(3) The number of available nests is fi xed for 
each generation and the probability of a host 
bird fi nding a parasitic egg is set to Pa Î éë ùû0 1, .

The CS algorithm fi rst defi nes the objective 
function and initializes this function to gener-
ate initial positions randomly, setting param-
eters such as maximum discovery probability 
Pa, problem dimension, population size, and 
maximum number of iterations. In the search 
processes, the cuckoo fi rst generates a new loca-
tion based on the current location by randomly 
swimming in a Lévy fl ight, and selects a better 
search location by greedy means according to 
the fi tness function. To increase the diversity 
of the search, some of the newly generated posi-
tions are discarded according to a certain prob-
ability Pa . The same number of new positions 
as the discarded positions are regenerated us-
ing the preference random tour, and the better 
search positions are preserved according to the 
fi tness value evaluation, completing a round of 
the search for superiority.

On this consideration, the cuckoo’s path of 
discovery is as follows,
  X X Li

t
i
t+ = + Å ( )1   ,   (19)

where i nÎ ¼éë ùû1 2, , , , n  is the number of cuckoo 
nests. Xi

t  denotes the position vector of the   i-th 
nest in generation t . Xi

t+1  denotes the position 
vector of the i -th nest in generation t +1  based 
on Xi

t .   is the control step of the random 
search range,  = -( )0 X Xi

t
b ,  0 0 01= . ,  

Xb  is the current optimized best position. Å  is 
the point-to-point multiplication. L ( )  is the 
random search path and its step size obeys the 
Lévy distribution.

In Levy fl ight, short and long steps are al-
ternated. Levy fl ight prefers a random wan-
der search strategy that mixes variational and 
crossover operations throughto produce each 
new position of the random wander.
  X X r X Xi

t
i
t

j
t

k
t+ = + ⋅ -( )1 ,   (20)

where r  denotes the scaling factor and 
r rand= ( )0 1, . Xj

t  and Xk
t  are the randomly 

selected nest locations, respectively.
In the CS algorithm, a suitable number of 

hidden layer nodes are selected for the network 
by assigning the number of neurons in each 
hidden layer to the optimal bird nest location. 
The CS algorithm uses the Levy fl ight principle 
to update the candidate populations, which ex-
pands the search range and increases the di-
versity of populations through random tour and 
preference random tour search strategies. This 
effectively avoids falling into local minima on 
the DBN-CER gradient curve, while effectively 
balancing the global search and local search for 
the optimal solution.Meanwhile, in the process 
of global search for optimal solutions, the CS 
algorithm has a faster speed, which can accel-
erate the gradient descent of DBN-CER and 
quickly obtain the approximate global optimal 
solution. For the DBN model with three hidden 
layers selected in this paper, each layer has 
m m m1 2 3, ,  neurons respectively, and the posi-
tion of each cuckoo in the CS is set as a three-
dimensional vector X m m m� , ,1 2 3( ) .

3.3. Algorithm fl ow
The CS algorithm was used to select the 

number of DBN hidden layer network nodes 
and optimize the DBN-CER model structure. 
The fl ow chart is shown in Fig.5. The specifi c 
steps are as follows.

Step 1: The data set is divided into a train-
ing set and a test set with a certain ratio.

Step 2: Set parameters such as the number 
of nests, problem dimension, maximum discov-
ery probability Pa, and maximum number of 
iterations.
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Step 3: The number of nodes in the DBN-
CER hidden layer is encoded and the position 
vector is set to X m m m� , ,1 2 3( ) ,which is searched 
using the CS algorithm.

Step 4: MAPE of the DBN-CER model was 
used to construct the objective function, fi tness. 
where the training process of the DBN consist-
ed of two phases, pre-training and fi ne-tuning. 
The pre-training phase uses the CD algorithm 
to train each layer of the RBM in a layer-by-
layer manner. The fi ne-tuning phase uses the 
BP algorithm to propagate backwards the error 
between the actual output and the true value 
layer by layer to optimize the parameters of the 
whole DBN model. The objective function is cal-
culated and the initial optimal value is saved 
as the current global optimum.

Step 5: Updating the nest positions by (19) 
and (20), discarding some of the newly gener-
ated positions according to a certain probability 
Pa, calculating the fi tness value and comparing 
it with the optimal value in step 3, replacing 
the global optimal weight if the contemporary 
optimal value is better than the global optimal 
weight, and recording the fi nal optimal nest po-
sition left behind.

Step 6: If the optimal nest position obtained 
reaches the set number of iterations, the value 
of the optimal position is assigned to the num-
ber of nodes of the DBN-CER model, otherwise 
return to step 5.

Step 7: Training of the DBN-CER model op-
timized with the CS algorithm.

Step 8: Input test samples and output re-
gression results.

4. Real data analysis

4.1. Data sources and pre-processing
The experiments were conducted on a 64-bit 

8-core R7-4800U, benchmark frequency of 1.80 
GHz and a computer confi guration with 16 GB 
of RAM. Both python 3.7 and Tensorfl ow 2.2 
were used.

The research data for this paper is derived 
from a hot-rolled strip production line at a steel 
company and includes twenty infl uencing fac-
tors such as process parameter factors: FT 
(heating furnace temperature), FET (fi nal roll-
ing inlet temperature), FDH (processed thick-
ness), CT (coiling temperature), RT (roughing 
exit temperature) and chemical factors: Mn 
(manganese), Si (silicon), Ti (titanium), V (va-
nadium), NbN (niobium oxide), Nbc (niobium 
carbide), Cs (carbon residue).The data was di-
vided into a training set and a test set in the 
ratio of 7:3. The K nearest neighbour algorithm 
(KNN) was used to process the collected data 
for missing values. The R language lm() func-
tion was used for outlier detection. Finally, 
data normalization is performed by equation, 
which leads to the fi nal modeling data.
  x x x

x xi
i min

max min

 =
-
-

.  (21)

To evaluate the predictive performance of 
each model, three performance metrics were 
used to measure the performance of the mod-
els, includingRMSE, MAPE and MAE.

Fig. 5. Optimizing DBN-CER model with the CS algorithm
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where y represents the sample value, g repre-
sents the predicted value and n is the sample 
size.

4.2. Experimental results and analysis
4.2.1. Parameters selection
We take the tensile strength (TS) of the 

steel mechanical properties index as the depen-
dent variable and the twenty infl uencing fac-
tors studied as the independent variables, and 
the optimal parameters of the DBN prediction 
model obtained after the CS search are shown 
in Table 1.

Using these parameter values for training 
the model, the following table shows the com-
posite results for the training and test sets 
when k  =1, 5, 9, 19, respectively. 

The results show that the accuracy of the 
training and test sets graduallyimproves as 
k  increases, and for the proposed DBN-CERk 
model, the model predicts the most accurate re-
sults when k  is 19, i.e., the effi ciency of predic-
tion can be improved by using multiple expec-
tile regressions simultaneously.

4.2.2. Analysis of results
We substitute the data set into the trained 

DBN-CER19 model and obtain the prediction 
results as shown in Figures 6 and 7. In order 
to highlight the prediction effect of the train-
ing and test sets more intuitively, we randomly 
select 100 samples from the training and test 
sets respectively, and compare the predicted 
values with the corresponding actual values. 
From Fig. 6(a) and Fig. 7(a), it can be seen in-
tuitively that the predicted values represented 
by the yellow dots cover a large area of the real 
values represented by the blue dots, and it can 
be seen that the fi tting effect of this model is 
signifi cant.

Fig. 6(b) and Fig. 7(b) show the true values 
of the training and test sets as the horizontal 
coordinates and their predicted values as the 
vertical coordinates, respectively. The two side 
lines represent the range of ±6% interval. The 
closer the point to the middle diagonal line, the 
better the prediction of the model is. The graph 
shows that the vast majority of points are dis-
tributed within the ±6% interval range, indi-
cating that the true and predicted values are 
very close to each other and the model has a 
better prediction.

4.2.3. Performance comparison with differ-
ent models

To validate the performance of the proposed 
improved DBN-CER19 model, it was compared 
with BPNN, QRNN, ERNN, DBN, and deep 

Table 2 results of different k  

 k  
Train Test

RMSE MAPE MAE RMSE MAPE MAE

1 20.5264 2.4580 12.9981 21.6788 2.5632 13.7474

5 20.5184 2.4563 12.9831 21.5830 2.5445 13.6300

9 20.4896 2.4531 12.9810 21.4967 2.5313 13.5429

19 20.4295 2.4478 12.9499 21.4381 2.5251 13.5035

Fig. 6. DBN-CER19 training results (a) Fitting plots of the true and predicted values of the training set (b) 
Error intervals of the true and predicted values of the training set.
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belief network quantile regression (DBN-QR) 
models.For the fairness of comparison, the net-
work structure of these comparison models was 
kept consistent with DBN-CER19, which are 
20-12-36-23-1. The statistical results of differ-
ent NN models on the training and test sets are 
shown in Table 3.

Among them, the QRNN model and the 
ERNN model are the predicted and true value 
errors under the condition of  = 0 5. . It can be 
seen that the DBN-CER19 model outperforms 
the error metrics in both the training and test 
sets.

Fig. 8 makes a comparison plot of each mod-
el on the test set data under the three perfor-
mance metrics.

From Fig. 8, it is clear that DBN-CER19 
is the most accurate and precise model in our 
experiments. Meanwhile, the pre-trained DBN 
and DBN-QR models perform second best on 
MAPE and RMSE, while QRNN and ERNN per-
form very unstable under different metrics and 
BPNN performs the worst in the experiments. 
Overall, the pre-trained DBN model performs 
better than the model without pre-training be-
cause DBN is able to continuously learn more 
abstract high-level information from low-level 
data, and the layer-by-layer pre-training of 
RBM in it can produce very good initial values 

of parameters, which can achieve smaller em-
pirical errors and stronger generalization abil-
ity. And the improved DBN-CER19 using CS 
algorithm proposed in this paper utilizes mul-
tiple expectile regression can improve the effi -
ciency of prediction, and shows obvious superi-
ority under MAE, MAPE, and RMSE metrics.

5. Conclusion
This paper investigates the quantitative 

relationship between the tensile mechanical 
properties of hot-rolled steel and 20 process 
and chemical composition parameters. A deep 
learning model is combined with expectile re-
gression to establish the DBN-CER19 model, 
which provides a more accurate model predic-
tion method for steel mechanical strength pre-
diction.

The CD algorithm is fi rst used for unsuper-
vised pre-training of the underlying RBM to 
obtain highly abstract reconstructed features 
and better initial values of the parameters. The 
learned reconstructed features are then used as 
the input of the DBN prediction network, and 
the BP algorithm is used to perform supervised 
fi ne-tuning on the labeled samples, and then 
the DBN prediction model with shared param-
eters is obtained to fi t the output, avoiding the 

Fig. 7. DBN-CER19 prediction results. (a) Fitting plot of the true and predicted values of the test set (b) 
Error interval of the true and predicted values of the test set.

Table 3. The statistical results of different models

Model
Train Test

MAE MAPE RMSE MAE MAPE RMSE

BPNN 13.2937 2.5128 20.7431 14.1365 2.6302 23.6983

QRNN 13.2100 2.5015 21.1377 13.9400 2.6052 21.9033

ERNN 13.0375 2.4655 20.5016 13.9956 2.6088 23.8001

DBN 13.3423 2.5230 20.8438 13.8297 2.5768 21.7370

DBN-QR 13.2353 2.5034 21.2197 13.6978 2.5653 21.8364

DBN-CER19 12.9499 2.4478 20.4295 13.5035 2.5251 21.4381



Functional materials,  29,  2,  2022 289

S. Huang et al. / Prediction of mechanical properties ... 

drawback that the BP algorithm is prone to fall 
into local optimum and long training time due 
to the random initialization of the weight pa-
rameters. Meanwhile, the number of DBN hid-
den layer network nodes is selected using the 
CS algorithm to optimize the DBN-CER model 
structure, which improves the performance of 
the model while speeding up the convergence 
of the tuning phase. Expectile regression can 
handle data heterogeneity well, and it is in-
sensitive to outliers and has good robustness. 
Moreover, it can consider the overall distribu-
tion, and multiple expectile regressions can be 
used to further improve the prediction effi cien-
cy of steel mechanical properties.

Through empirical analysis, the proposed 
model is compared with BPNN, QRNN, ERNN, 
and DBN, and the effectiveness of the method 
is demonstrated. This is important for improv-
ing the forecast accuracy of hot rolled steel and 
provides a degree of theoretical help for high 
quality production.
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