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In this paper, a DBN-CER,, model (deep belief network and composite expectile regression)
is proposed to predict the tensile strength of hot rolled strip. The model takes full advantage
that the quadratic loss function used by expectile regression can be solved by standard gradient
optimization algorithm, and that DBN can learn more abstract hidden layer information from
the underlying data. At the same time, the model combines the CS algorithm (Cuckoo Search)
to select the number of DBN hidden layer nodes to improve the network structure. In order to
demonstrate the superiority of this method, we use root mean squared error (RMSE), mean
absolute percentage error (MAPE) and mean absolute error (MAE)as measurement indicators
for empirical analysis. The results of the proposed model on the test set are 21.4381, 2.5251and
13.5035, respectively. The empirical results show that the DBN-CER,, model has higher predic-
tion performance than previous models such as BP neural network(BPNN), quantile regression
neural network(QRNN), expectile regression neural network(ERNN), and DBN.

Keywords: deep belief network; composite expectile regression; CS algorithm; mechanical
properties of steel

IIporuo3s mMexaHMYeCKHUX CBOWCTB rops4YekaTtaHoil moJsiockl Ha ocHoee DBN u
KOMIIO3UTHOM oxkumaemoii perpeccun. Cuio Xyan, Caocs Xo, Cunwv Yowcan, Beiiearn Jlu

IIpenmnaraercss momens DBN-CER19 (cets rimy6okoro moBepusi W COCTABHAS PErpeccus
OSKHJTAHUM) JIJIsI IPOTHO3UPOBAHMUS IIPOYHOCTH HA PACTSIIKEHNe TOPSTIYeKaTaHoM moJrockl. Mosess
HCIIOJIb3yeT TO, YTO KBaJapaTUYHast (PYHKIIUSA II0TE€Pb, UCIOJb3yeMasi B OMKHUIAeMON perpeccuw,
MOeT OBITH pellleHa C MOMOIIBI CTAHJAPTHOTO AJITOPUTMA ONTUMHU3AIUN TPAJIUEHTa, U UTO
DBN wmosxer momyuats 6osiee abCTPaKTHYIO MHAPOPMAIIAIO O CKPBITOM CJI0€ U3 0A30BBIX JAHHBIX.
B 1o e Bpems momens oobemuuser amropurm CS (Cuckoo Search) mis Beibopa KomdecTBa
ya3isi0B ckpbrroro ciiog DBN s yaydmienws crpykrypbl cetr. UTOOBI IIPOAEMOHCTPUPOBATH
IIPEBOCXOJICTBO 9TOI'0 METO/Ia, MBI UCITOJIb3yeM cpenuerBaaparuunyo omuoky (RMSE), cpemuion
abcosrroTayIo niporeHTHy0 omruOKy (MAPE) u cpennioo abeosorayio omubky (MAE) B kauecTse
moKazaTesiel M3MepeHus JIsi IMIIMPUYECKOr0 aHasm3a. Pe3ysbraThl IIpeaaraeMoil MoJesn
Ha TecToBOM Habope cocrasiisiior 21,4381, 2,5251 u 13,5035 cOOTBETCTBEHHO. JMIIMPUYECKUE
pe3yibTaThl I0KasbiBaioT, uyro momenab DBN-CER19 mmeer Gosiee BbICOKYI 2dQeKTHBHOCTH
IPOrHO3UPOBAHMSI, UeM IIPeIBIIYIINe MOLEe/IN, Takue Kak Heiiporuas cetb BP (BPNN), meitponnasa
cerb kBaHTUIbHOU perpeccru (QRNN), meiiponnasn cers perpeccun oxugauns (ERNN) u DBN.
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1. Introduction

The prediction of mechanical properties of
hot rolled strip steel is a very complex metal-
lurgical frontier technology that can provide a
great impetus to long-term development of the
steel industry. Since there is a complex and
definite correspondence between the internal
organization structure, strip composition and
the corresponding production process that de-
termines the mechanical properties of strip
steel, it has been a difficult problem of concern
for the steel metallurgical industry to establish
a prediction model based on the quantitative
relationship between these process parameters
to further optimize the mechanical properties
of steel.

In response to the modeling difficulties such
as many influencing factors and complex inter-
actions of the steel product performance index
forecasting problem, researchers have carried
out numerous related research works. Bori-
sade S.G et al[l]used a polynomial regression
mathematical model to predict the mechanical
propertiesand experimentally demonstrated
the authenticity of the model. Wu et al[2] used
the MIV method to guide the selection of input
neurons for the bayesian NN model to estab-
lish the mechanical performance prediction
model. Khalaj G et al[3] used an artificial NN
model to predict the ultimate tensile strength
of APIX70 steel and achieved a high prediction
accuracy. Chou et al[4] used TPSO algorithm
to optimize BPNN for modeling and optimiza-
tion of yield strength with high computational
efficiency and strong robustness. Adel Saoudi
et al[5]developed an artificial neural network
(ANN)model to predict tensile and impact
properties of APIX70 pipeline steel based upon
its chemical composition. Hu[6]constructed a
mechanical property prediction model for hot-
rolled strip steel based on a deep feedforward
NN and a convolutional neural network(CNN)
fused with LeNet.5 and GoogLeNet. Xie Qian
et al[7] designed a deep learning model to pre-
dict the mechanical properties of industrial
steel plates based on the process parameters
and composition of crude steel and applied it
online in a real steel manufacturing plant.

Compared to the mean regression analy-
sis method, the QR proposed by Koenker[8]
provides a more comprehensive picture of the
potential relationships between response vari-
ables and covariates when faced with asym-
metrically distributed or larger scattered data.
Tian et al[9] developed a generalized RBF
neural network quantile regression model for
predicting the mechanical properties of hot-
rolled strip steel. Dadabada et al[10] proposed
a QRNN based on particle swarm optimiza-

280

tion (PSO)-trained to forecast volatility from
financial time series. Zanget al[11] extracted
the higher order features of the data based on
CNN and further used gated recurrent NN for
quantile regression modeling to predict the bus
load values under different quantile conditions
at any future moment. Li et al[12] proposed a
long short-term memory NN (LSTM) quantile
regression probability density prediction meth-
od to predict wind power, wind power interval
and probability distribution of wind power.

For the detection loss function of quantile
is not differentiable at zero, Newey and Pow-
ell[13] proposed the idea of expectile regres-
sion, where the detection loss function of ex-
pectile is everywhere differentiable, which can
not only attenuate the influence of outliers on
statistical inference and have the advantages
of both mean regression and quantile regres-
sion, but also can characterize the whole dis-
tribution more comprehensively while having
higher estimation efficiency. Hu et al[14] in-
troduced an expectile-based VaR risk measure
tool to obtain a risk measure based on a semi-
parametric conditional autoregressive model,
using expectile to estimate the model param-
eters, which makes fuller use of information
and can better measure Chinese stock market
risk. Jiang et al[15] proposed the ERNN model,
which adds a NN structure to the expectile re-
gression method, and since the expectile model
uses an asymmetric square loss function, it can
be easily estimated by standard gradient-based
optimization algorithms and directly outputs
the conditional expectation function, inherit-
ing the ability of NN to handle nonlinear prob-
lems. Jiang[16] proposed a ERNN model with
an increased penalty term, which can flexibly
express the nonlinear relationship between
the explanatory and response variables, and
can completely examine the variation pattern
of the conditional distribution of the response
variables and comprehensively improve its
predictive capability. Liu et al[17] proposed a
class of semi-parametric variable coefficient
composite expectile regression models, while
establishing the large sample nature of their
estimation. Numerical simulations show that
the obtained estimates are more effective due
to the consideration of information from mul-
tiple expectiles.

Currently, deep learning is successfully ap-
plied in various fields ranging from natural
language recognition, environment perception
to human behavior recognition with its efficient
feature extraction ability and powerful model-
ing capability. As one of the widely used deep
learning methods, DBN 1is able to automati-
cally learn and extract essential features from
massive data using its deep structure from bot-
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tom-up. And it can largely solve the problems
of shallow learning and improve the prediction
performance by the feature extraction capabil-
ity of Restricted Boltzmann Machine (RBM).
Bao et al[18] proposed an improved deep learn-
ing structure based on DBN and support vec-
tor machines (SVR) for traffic prediction under
severe weather. Yu et al[19] combined symbolic
and classification rules with deep networks and
proposed a knowledge-based deep trust network
model (KBDBN) with good feature learning
performance to predict the surface roughness
of workpieces. Xing et al[20] proposed a tem-
perature-based DBN in which temperature is
considered in the learning process of DBN, and
the introduction of temperature parameters
improves the learning ability of DBN by chang-
ing the transfer function of neurons and activa-
tion conditions. Abdel-Zaher et al[21] proposed
a computer-aided diagnosis scheme for breast
cancer detection based on DBN, which provided
an effective classification model for breast can-
cer.
When constructing DBN models, the choice
of network structure and the number of hid-
den layers have a great impact on the predic-
tion results of model. However, the network
structures of DBN models are commonly ob-
tained empirically or through time-consuming
multiple tuning of parameters. In this paper,
we study a DBN composite expectile regres-
sion model optimized with the CSalgorithm
and use the model for regression prediction of
steel mechanical properties. The model fully
applies the advantage that the quadratic loss
function used in the expectile regression can be
used to solve the model with standard gradient
optimization algorithms, and the feature that
DBN can continuously learn from input data
to discover more abstract hidden layer infor-
mation. Further, the number of DBN hidden
layer nodes is selected using the CS algorithm
to improve the network structure. Finally, the
DBN model with optimal structure is used for
feature extraction and regression prediction
of steel mechanics data. The empirical results
show that the improved DBN composite expec-
tile regression model proposed in this paper
outperforms prediction models such asBPNN,
QRNN, ERNN and DBN.

2. Composite Expectile regression and
DBN model

2.1. Composite Expectile regression

Newey and Powell[13] established the asym-
metric quadratic loss detection function based
on the [, parametric in 1987 and proposed the
idea of expectile regression: the overall distri-
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bution of the dependent variable is estimated
by regressing the independent variables on the
conditional expectile of the dependent variable
to obtain a regression model based on all ex-
pectiles.It is a one-to-one mapping relationship
with the quantile, which makes it inherently
similar to the quantile and can give a complete
portrayal of the conditional distribution. The
computational advantage of the squared coef-
ficient in the loss function makes the expectile
have better properties than the quantile. Spe-
cifically, for a random variable Y , its 6 -expec-
tile can be obtained by optimizing the following
expected loss function:

Expectile, (0) = arg min E [pg (v - v)] , (1)

where p, (u) is the asymmetric squared loss
function:
Ou*,u>0

Pofu) = (1-0)u?u <0,

where 0 ¢ (O, 1) 1s the expectile condition,
which determines the degree of asymmetry of
the loss function. EH denotes the expectation
operator, and u is the residual value of Y — vr.

Consider the  explanatory  variable
X, = (%, %,...,%,), p represents the dimen-
sionality, and Y 1s the response variable, as-
suming that the functional relationship be-
tween X and Y can be expressed as:

Y =7(X,B)+e¢, (3)

where f() is the nonlinear function, S is the
parameter to be estimated, and € 1is the error
term. The corresponding empirical loss func-
tion is defined as:

L0)= %30 (Y- Fh). @

@)

where N is the sample size, f(x,f,) is the
conditional expectile value at different 0 lev-
els, and B, is the coefficient related to 6,
0 €(0,1).

Liu and Zhou[22] proposed the composite
expectile regression and proved that the com-
posite expectile regression has good statistical
properties relative to the expectile regression.

Foragiven K ,let 6, :KL—H’k =12,..,K

and ¢, be the 0,-th expectile value of
e =Y = f(x, ﬁek) . The following composite ex-
pectile regression loss function can be ob-
tained:

R(p) = 3L(6) - ©)

:Kl_Nszzszoh (Yf_f(x"’ﬁ"k)_cg")'

k=1 i=1
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Fig.1. A constrained Boltzmann machine with 7
variables

We can solve the parameter problem by
minimizing.

2.2. Deep Belief Network

Over the past few decades, deep neural
networks(DNN), inspired by the structure
of the brain, have been used in a wide range
of practical problems. The DBN proposed by
Hinton et al[23], which consists of a stack of
multiple RBMs, combines the powerful learn-
ing capability of DNN with the interpretability
of inference-based processes and is considered
one of the most effective DNN.

A DBN is a feed-forward NN with a deep
structure, which consists of an input layer,
multiple hidden layers and finally an output
layer. The input layer receives the input data
and transmits the data to the hidden layers to
complete the learning process. The hidden lay-
ers are created by several stacked RBMs, thus
forming a network capable of capturing under-
lying patterns and invariants directly from the
input data.

RBM is an undirected graph model with a
bipartite graph structure, and a typical RBM
model topology is shown in Fig. 1.

The observable and hidden layers are used
to represent the observable and hidden vari-
ables in the RBM . The observable and hidden
layers are fully connected by symmetric undi-
rected weights, but there is no connection be-
tween nodes in the same layer. The RBM is an
energy-based model with weights and biases
that determine the energy of the joint configu-
ration of the observable and hidden layer nodes

E(v,h) : ) n
E(v, h |T) =->av, —> bh ZZvlwljh] =

i=1 j=1 i=1 j=1

=—-a"v—-b"h—v'Wh,
(6)

where

V= [vl,vz,...,vm],
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h=[h,hy...,h],

n

Wy Wy oWy,

w,, w W,
21 Yoz * 2
W = "l
wml wm2 ”wmn
a=|a,a,...,a,], b=[b,b,...,b,|, (7
a, a, ...a,
bl bz ' bn
t = Wy Wyp =+ Wy, (8)
Woy Wy~ " Wy,
w lwm2 wmn

Assume that I = {a,b, W} is the RBM model
parameters, v is the output of the visible layer,
h is the output of the hidden layer, W is the
weight matrix between the hidden layer and
the visible layer, a is the bias vector of the vis-
ible layer, and b is the bias vector of the hidden
layer. v, is the output value of the i-th visible
neuron, h is the output value of the j-th hidden
neuron, a is the bias of the i-th visible neuron,
b, is the bias of the Jj-th hidden neuron, and w,
is the weight of the edge between the i-th vis-
ible neuron and the j-th hidden neuron in the
RBM. m is the total number of neurons in the
visible layer and n is the total number of neu-
rons in the hidden layer.

The joint probability distribution p (V, h) of
the RBM is defined as:

1 —E(v,hl; 1 av Th _vD
p(v,hh):Z_eE(h):_e b'he ,(9)

B Zﬂ

=S Eeih) (10)

v,h

where Z 1is the normalization factor, often re-
ferred to as the partition function. The condi-
tional probability of each observable and hid-
den variable in a RBM is described as:

p(h =1v)= G[bl. +§m:v,.wﬁ], (11)

p(o,=1lh)=0c , (12

a, + Zn;hjwﬁ

where p(h, =1 |v) is the activation probabil-
ity of the - -th hidden layer neuron, p(v, =1 h)
is the activation probability of the i-th vis-
ible neuron, o is the logistic function, and
cr(x):l/(1+e*’“).
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Fig. 2. A typical DBN model structure

The DBN consists of multiple RBMs stacked
from bottom to top, with the hidden layer of the
I -th RBM serving as the observable layer of
the (l + 1) -st RBM. A typical DBN structure
model is shown in Fig. 2.

The joint probability of all variables in DBN
can be decomposed as:

p(V, h(l),,,,, h(L) _
= p(vIn) [ﬁp (h"| h““))] p(n 7, 0)

_ [Llp(h(l) | h(z+1))] p(h(Lfl), h(L)), (13)

where p(hl |h<l+l)) is a Sigmoid-type condi-

tional probability distribution:
p(h(l) | h(z+1)) . (az +W(l+1)h(l+1)), (14)

where G(-) is the Logistic function, a’' is the
bias parameter, and W' is the weight pa-
rameter.

2.3. Composite Expectile Regression
Based on DBN

DBN can continuously learn from input data
to discover more abstract hidden layer informa-
tion, while the layer-by-layer pre-training of
RBM has the feature of producing very good
initial values of parameters. In order to fully
apply the quadratic loss function used in the
expectile regression, which can be solved by the
standard gradient optimization algorithm, and
the advantage that multiple expectile regres-
sions can improve the efficiency of parameter
estimation, we propose a prediction model(DBN-
CER) combining DBN and composite expectile
regression, and use DBN as the nonlinear mod-
el at f() in

Functional materials, 29, 2, 2022

- (15)
K
= Y —glx, —c, |
RN EEVNRN
where T ={a,b,W} is the parameter of the

model, N 1is the number of samples, and for

L,k =12,..,K,
1

+
0c (0,1), ¢, be the 6, -thexpectile value of
e, =Y —f (xi, ﬁq} . glx, ﬂgk) is the conditional

expectile value of the DBN prediction model at
different 6 levels.

a given K, let 6, =

3. Solution Algorithms

The design of the network structure is a key
issue in the application of DBN.Here we use
a swarm intelligence optimization algorithm-
CS algorithm proposed by Prof. Xin-She Yang
and S. Deb¥ at the University of Cambridge,
UK, to find the optimal number of hidden layer
units.The training process of DBN prediction
model can be divided into two phases: layer-
by-layer pre-training and fine-tuning.First, the
underlying RBM is unsupervised pre-trained
by the Contrastive Divergence(CD) algorithm
to obtain highly abstract reconfiguration fea-
tures and better initial values of parameters.
The learned reconstructed features are then
used as the input of the DBN prediction net-
work, and the BP algorithm is used to perform
supervised fine-tuning on the labeled samples,
and then a parameter-sharing DBN prediction
model is obtained to fit the output.

3.1. Unsupervised pre-training and
fine-tuning of DBN

The training process of DBN prediction
model is divided into two phases: pre-training
and fine-tuning.

The first phase is the forward-stacking RBM
learning process: unsupervised layer-by-layer
learning is used to initialize the parameters of
the NN. As shown in Fig. 3, in order to adjust
parameters such as weights and biases of the
network, greedy pre-training by unsupervised
means is required in the first phase, and the
unsupervised learned model parameters are
used as the initial values of the supervised
learning model to provide a priori knowledge
of the input data for the subsequent learning
process in phase 2.

In 2002, Hinton[25] proposed the CD algo-
rithm, a fast learning algorithm for RBM. In
the CD algorithm, the probabilities of all hid-
den variables are first calculated using (11),
and based on this distribution, a hidden vec-
tor 1s sampled from it by the Gibbs sampling
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RBM 3
o)

Fig. 3. Layer-by-layer pre-training process for
DBN

method. Then, based on this hidden vector, the
probabilities of the observable variables are
calculated using (12), and based on this distri-
bution, the input vector of the visible layer is
reconstructed by Gibbs sampling again. This
mapping and reconstruction process between
the visible and hidden layers is repeatedly per-
formed, and the values of weights a, b and W
are continuously updated during each recon-
struction. The update criteria for each param-
eter are:

AvVij = e(<v h; >data <vihj>recon)’ (16)
Aa’i =e (<U'>data - <vi>recon) ’ (17)
Abj = e(<hj>data - <hj>recon)’ (18)

where e is the learning rate and e € (0,1)
. {)4ua denotes the mathematical expectation
defined by the input dataset and (-) . denotes
the mathematical expectation defined by the
model after a one-step reconstruction.

Phase 2 is the backward fine-tuning learning
process of DBN: global fine-tuning of network
parameters using the back-propagation algo-
rithm.As in Fig. 4, after each RBM is trained
layer by layer, a regression layer is added to
the top of the resulting DBN as the output lay-
er, and then the weights of the entire network
are fine-tuned using the BP algorithm.Starting
from the last layer of the DBN, the model pa-
rameters are fine-tuned to the previous layer
using known labels, and then the model param-
eters are further optimized globally.For the re-
gression problem, the top layer of the network
is generally chosen as the regression layer with
only one node. This avoids the disadvantages of
BP algorithms that tend to fall into long train-
ing timesandlocal optimum due to the random
initialization of the weight parameters, and
not only improves the performance of the mod-
elwhile speeding up the convergenceof the tun-
ing phase.
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Fig. 4. Pre-training and fine-tuning of DBN

3.2. CS optimized DBN structure

The research team of Bengio[26] proved
after extensive experiments:DBNcontaining
multiple hidden layers are more effective than
single hidden layer networks.In another paper,
Bengio and Larochelle[27] further elaborated
on this issue based on a series of experimental
results.The results show that the fitting effect
of the DNN model increases as the number of
hidden layers increases. However, when the
number of hidden layers is increased to more
than 4, the fit of the model weakens and the
generalization performance decreases. The un-
supervised pre-training process has also been
shown to contribute to the optimization of deep
structure.Therefore, we choose the DBN struc-
ture with 3 RBMs here. The number of hidden
layer neurons also affects the performance and
fitting ability of the model.If the number of hid-
den layer neurons is too small, the model has
difficulty learning useful features and cannot
fit the data effectively. If the number of hidden
layer neurons is too large, the model tends to
be overfitted.Moreover, the more the number of
hidden layer neurons, the more parameters the
model needs to calculate, leading to a longer
training process. Therefore, selecting the right
number of hidden layer neurons is a key step in
building the network model.

Intelligent optimization algorithms are a
class of meta-heuristic optimization algorithms
inspired by biota in nature and summarized
with powerful computational, optimization-
seeking capabilities.With its universal applica-
bility it is widely used for network structure de-
sign and parameter optimization problems in
NN.Among the many intelligent optimization

Functional materials, 29, 2, 2022
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algorithms, the CS algorithmis widely used in
practical problems because of its simple struc-
ture, easy implementation, few parametersand
good search performance (easy convergence to
global optimum and fast convergence, excellent
search path).Chen et al[28]proposed a proton
exchange membrane fuel cell (PEMFC) degra-
dation prediction method based on wavelet NN
and CS algorithm, which greatly improved the
prediction accuracy of PEMFC.Preeti Malhotra
et al[29] used the CS algorithm to optimize a
hybrid model combining discrete cosine trans-
form (DCT) and principal component analysis
(PCA) to improve the accuracy of face recogni-
tion and further optimize the face recognition
system.Yang et al[30]combined the CS algo-
rithm with finite element analysis to propose a
new method for optimizing the positioning lay-
out of sheet metal fixtures based on the “N-2-1”
positioning principle.

The CS algorithm is based on the parasitic
incubation behavior of cuckoos and simulates
the biological behavior of cuckoos searching for
the optimal host nest to lay their eggs, this nest
representing the new or better solution. In ad-
dition, to simulate the cuckoo’s nest search, the
algorithm improves the optimal location based
on the Lévy flight path principle rather than a
simple isotropic random wander.The CS algo-
rithmsets up three ideal states as follows:

(1) Cuckoos lay one egg per generation at a
time and hatch randomly in 1 nest.

(2) A greedy selection strategy. Cuckoos al-
ways retain the best nest as a host until a bet-
ter nest is found, and the nest most suitable for
egg-laying will be retained for the next genera-
tion.

(3) The number of available nests is fixed for
each generation and the probability of a host
bird finding a parasitic egg is set to Pa € [0, 1] .

The CS algorithm first defines the objective
function and initializes this function to gener-
ate initial positions randomly, setting param-
eters such as maximum discovery probability
Pa, problem dimension, population size, and
maximum number of iterations. In the search
processes, the cuckoo first generates a new loca-
tion based on the current location by randomly
swimming in a Lévy flight, and selects a better
search location by greedy means according to
the fitness function. To increase the diversity
of the search, some of the newly generated posi-
tions are discarded according to a certain prob-
ability Pa. The same number of new positions
as the discarded positions are regenerated us-
ing the preference random tour, and the better
search positions are preserved according to the
fitness value evaluation, completing a round of
the search for superiority.
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On this consideration, the cuckoo’s path of
discovery is as follows,

X" =X'+a®L(1), (19)

where i € [1, 2,..., nk n is the number of cuckoo
nests. X; denotes the position vector of the i-th
nest in generation ¢ . X/ denotes the position
vector of the i -th nest in generation ¢ + 1 based
on X/. a is the control step of the random
search range, a =aq, (Xl.t - Xb), a, = 0.01,
X, is the current optimized best position. @ is
the point-to-point multiplication. L(/"t is the
random search path and its step size obeys the
Lévy distribution.

In Levy flight, short and long steps are al-
ternated. Levy flight prefers a random wan-
der search strategy that mixes variational and
crossover operations throughto produce each
new position of the random wander.

X" =X+ (X - X;), (20)

where r denotes the scaling factor and
r = rand |0, 12. X; and X, are the randomly
selected nest locations, respectively.

In the CS algorithm, a suitable number of
hidden layer nodes are selected for the network
by assigning the number of neurons in each
hidden layer to the optimal bird nest location.
The CS algorithm uses the Levy flight principle
to update the candidate populations, which ex-
pands the search range and increases the di-
versity of populations through random tour and
preference random tour search strategies. This
effectively avoids falling into local minima on
the DBN-CER gradient curve, while effectively
balancing the global search and local search for
the optimal solution.Meanwhile, in the process
of global search for optimal solutions, the CS
algorithm has a faster speed, which can accel-
erate the gradient descent of DBN-CER and
quickly obtain the approximate global optimal
solution. For the DBN model with three hidden
layers selected in this paper, each layer has
m,, m,, m, neurons respectively, and the posi-
tion of each cuckoo in the CS is set as a three-
dimensional vector X (,ml, m,, ms) .

3.3. Algorithm flow

The CS algorithm was used to select the
number of DBN hidden layer network nodes
and optimize the DBN-CER model structure.
The flow chart is shown in Fig.5. The specific
steps are as follows.

Step 1: The data set is divided into a train-
ing set and a test set with a certain ratio.

Step 2: Set parameters such as the number
of nests, problem dimension, maximum discov-
ery probability Pa, and maximum number of
iterations.
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Fig. 5. Optimizing DBN-CER model with the CS algorithm

Step 3: The number of nodes in the DBN-
CER hidden layer is encoded and the position
vectoris set to X (,ml, m,, m3) ,which is searched
using the CS algorithm.

Step 4: MAPE of the DBN-CER model was
used to construct the objective function, fitness.
where the training process of the DBN consist-
ed of two phases, pre-training and fine-tuning.
The pre-training phase uses the CD algorithm
to train each layer of the RBM in a layer-by-
layer manner. The fine-tuning phase uses the
BP algorithm to propagate backwards the error
between the actual output and the true value
layer by layer to optimize the parameters of the
whole DBN model. The objective function is cal-
culated and the initial optimal value 1s saved
as the current global optimum.

Step 5: Updating the nest positions by (19)
and (20), discarding some of the newly gener-
ated positions according to a certain probability
Pa, calculating the fitness value and comparing
it with the optimal value in step 3, replacing
the global optimal weight if the contemporary
optimal value is better than the global optimal
weight, and recording the final optimal nest po-
sition left behind.

Step 6: If the optimal nest position obtained
reaches the set number of iterations, the value
of the optimal position is assigned to the num-
ber of nodes of the DBN-CER model, otherwise
return to step 5.

Step 7: Training of the DBN-CER model op-
timized with the CS algorithm.

Step 8: Input test samples and output re-
gression results.
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4. Real data analysis

4.1. Data sources and pre-processing

The experiments were conducted on a 64-bit
8-core R7-4800U, benchmark frequency of 1.80
GHz and a computer configuration with 16 GB
of RAM. Both python 3.7 and Tensorflow 2.2
were used.

The research data for this paper is derived
from a hot-rolled strip production line at a steel
company and includes twenty influencing fac-
tors such as process parameter factors: FT
(heating furnace temperature), FET (final roll-
ing inlet temperature), FDH (processed thick-
ness), CT (coiling temperature), RT (roughing
exit temperature) and chemical factors: Mn
(manganese), Si (silicon), Ti (titanium), V (va-
nadium), NbN (niobium oxide), Nbc (niobium
carbide), Cs (carbon residue).The data was di-
vided into a training set and a test set in the
ratio of 7:3. The K nearest neighbour algorithm
(KNN) was used to process the collected data
for missing values. The R language Im() func-
tion was used for outlier detection. Finally,
data normalization is performed by equation,
which leads to the final modeling data.

x, =2 Foin 21)
X - xmi

max n

To evaluate the predictive performance of
each model, three performance metrics were
used to measure the performance of the mod-
els, includingRMSE, MAPE and MAE.

Functional materials, 29, 2, 2022
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Table 2 results of different k&

Train Test
k
RMSE MAPE MAE RMSE MAPE MAE
1 20.5264 2.4580 12.9981 21.6788 2.5632 13.7474
5 20.5184 2.4563 12.9831 21.5830 2.5445 13.6300
9 20.4896 2.4531 12.9810 21.4967 2.5313 13.5429
19 20.4295 2.4478 12.9499 21.4381 2.5251 13.5035
T—1 ——
a) “x'—actyal value g b p
=3 o —predict value 5@
~ g § i
W M I 22
= [ R 4 | 88
® =3 | [ Al at ¥y M ! E‘N | !! "I Re o
° fs\ll & R | ! W 32
$ =
8_ 'g < ‘/-’
=+ i §
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Sample Actual value of tensile strength

Fig. 6. DBN-CER19 training results (a) Fitting plots of the true and predicted values of the training set (b)
Error intervals of the true and predicted values of the training set.

(22)
(23)
MAE = iIgi -y (24)

where y represents the sample value, g repre-
sents the predicted value and n is the sample
size.

4.2. Experimental results and analysis

4.2.1. Parameters selection

We take the tensile strength (TS) of the
steel mechanical properties index as the depen-
dent variable and the twenty influencing fac-
tors studied as the independent variables, and
the optimal parameters of the DBN prediction
model obtained after the CS search are shown
in Table 1.

Using these parameter values for training
the model, the following table shows the com-
posite results for the training and test sets
when k& =1, 5, 9, 19, respectively.

The results show that the accuracy of the
training and test sets graduallyimproves as
k increases, and for the proposed DBN-CER,_
model, the model predicts the most accurate re-
sults when % is 19, i.e., the efficiency of predic-
tion can be improved by using multiple expec-
tile regressions simultaneously.

Functional materials, 29, 2, 2022

4.2.2. Analysis of results

We substitute the data set into the trained
DBN-CER,, model and obtain the prediction
results as shown in Figures 6 and 7. In order
to highlight the prediction effect of the train-
ing and test sets more intuitively, we randomly
select 100 samples from the training and test
sets respectively, and compare the predicted
values with the corresponding actual values.
From Fig. 6(a) and Fig. 7(a), it can be seen in-
tuitively that the predicted values represented
by the yellow dots cover a large area of the real
values represented by the blue dots, and it can
be seen that the fitting effect of this model is
significant.

Fig. 6(b) and Fig. 7(b) show the true values
of the training and test sets as the horizontal
coordinates and their predicted values as the
vertical coordinates, respectively. The two side
lines represent the range of £6% interval. The
closer the point to the middle diagonal line, the
better the prediction of the model is. The graph
shows that the vast majority of points are dis-
tributed within the +6% interval range, indi-
cating that the true and predicted values are
very close to each other and the model has a
better prediction.

4.2.3. Performance comparison with differ-
ent models

To validate the performance of the proposed
improved DBN-CER19 model, it was compared
with BPNN, QRNN, ERNN, DBN, and deep
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Fig. 7. DBN-CER19 prediction results. (a) Fitting plot of the true and predicted values of the test set (b)
Error interval of the true and predicted values of the test set.

Table 3. The statistical results of different models

Train Test

Model
MAE MAPE RMSE MAE MAPE RMSE
BPNN 13.2937 2.5128 20.7431 14.1365 2.6302 23.6983
QRNN 13.2100 2.5015 21.1377 13.9400 2.6052 21.9033
ERNN 13.0375 2.4655 20.5016 13.9956 2.6088 23.8001
DBN 13.3423 2.5230 20.8438 13.8297 2.5768 21.7370
DBN-QR 13.2353 2.5034 21.2197 13.6978 2.5653 21.8364
DBN-CER19 12.9499 2.4478 20.4295 13.5035 2.5251 21.4381

belief network quantile regression (DBN-QR)
models.For the fairness of comparison, the net-
work structure of these comparison models was
kept consistent with DBN-CER19, which are
20-12-36-23-1. The statistical results of differ-
ent NN models on the training and test sets are
shown in Table 3.

Among them, the QRNN model and the
ERNN model are the predicted and true value
errors under the condition of 7 = 0.5 . It can be
seen that the DBN-CER19 model outperforms
the error metrics in both the training and test
sets.

Fig. 8 makes a comparison plot of each mod-
el on the test set data under the three perfor-
mance metrics.

From Fig. 8, it is clear that DBN-CER19
is the most accurate and precise model in our
experiments. Meanwhile, the pre-trained DBN
and DBN-QR models perform second best on
MAPE and RMSE, while QRNN and ERNN per-
form very unstable under different metrics and
BPNN performs the worst in the experiments.
Overall, the pre-trained DBN model performs
better than the model without pre-training be-
cause DBN is able to continuously learn more
abstract high-level information from low-level
data, and the layer-by-layer pre-training of
RBM in it can produce very good initial values
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of parameters, which can achieve smaller em-
pirical errors and stronger generalization abil-
ity. And the improved DBN-CER19 using CS
algorithm proposed in this paper utilizes mul-
tiple expectile regression can improve the effi-
ciency of prediction, and shows obvious superi-
ority under MAE, MAPE, and RMSE metrics.

5. Conclusion

This paper investigates the quantitative
relationship between the tensile mechanical
properties of hot-rolled steel and 20 process
and chemical composition parameters. A deep
learning model is combined with expectile re-
gression to establish the DBN-CER19 model,
which provides a more accurate model predic-
tion method for steel mechanical strength pre-
diction.

The CD algorithm is first used for unsuper-
vised pre-training of the underlying RBM to
obtain highly abstract reconstructed features
and better initial values of the parameters. The
learned reconstructed features are then used as
the input of the DBN prediction network, and
the BP algorithm is used to perform supervised
fine-tuning on the labeled samples, and then
the DBN prediction model with shared param-
eters is obtained to fit the output, avoiding the

Functional materials, 29, 2, 2022
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Fig. 8. Performance of each model on the test set

drawback that the BP algorithm is prone to fall
into local optimum and long training time due
to the random initialization of the weight pa-
rameters. Meanwhile, the number of DBN hid-
den layer network nodes is selected using the
CS algorithm to optimize the DBN-CER model
structure, which improves the performance of
the model while speeding up the convergence
of the tuning phase. Expectile regression can
handle data heterogeneity well, and it is in-
sensitive to outliers and has good robustness.
Moreover, 1t can consider the overall distribu-
tion, and multiple expectile regressions can be
used to further improve the prediction efficien-
cy of steel mechanical properties.

Through empirical analysis, the proposed
model is compared with BPNN, QRNN, ERNN,
and DBN, and the effectiveness of the method
is demonstrated. This is important for improv-
ing the forecast accuracy of hot rolled steel and
provides a degree of theoretical help for high
quality production.
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