Funct. Mater. 2022; 29 (3): 437-442.

doi:https://doi.org/10.15407/fm29.03.437

Some physicochemical aspects of oxo-species formation in melts of CsBr-LiBr and CsBr-LiBr-YBr3 systems at 973 K

V.L.Cherginets1, A.L.Rebrov1, A.Yu.Grippa1, T.P.Rebrova1, T.V.Ponomarenko1, N.V.Rebrova1, A.G.Varich1, O.I.Yurchenko2, V.V. Soloviev2

1Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
3Yuri Kondratyuk Poltava Polytechnic National University

Abstract: 

Interactions between the admixture oxo-species (as O2- donors) and the most acidic cations being the basis of the melts of CsBr + LiBr and (2CsBr-LiBr) + YBr3 systems containing different amounts of LiBr and YBr3, respectively, were studied at 973 K by the potentiometric method with the use of Pt(O2)YSZ membrane oxygen electrode as reversible to O2-. The addition of LiBr to CsBr melt up to xLiBr = 0.33 (x is mole fraction) results in the formation of Li2O as the main product, K(x,Li2O) = (6.1±1) ·104. The formation of LiO- is almost statistically insignificant 2CsBr-LiBr melt at 973 K is characterized by the upper limit of basicity due to the limited solubility of Li2O (1.23·10-2 mol·kg-1). The addition of YBr3 to 2CsBr-LiBr melt leads to the formation of YO+ complex and its stability constant is K(x,YO+) = 2.4(±0.1)&midddot;102. Together with the composition of the oxo-species the oxobasicity indices, pIL of the said systems were estimated as 3.62 for 2CsBr-LiBr melt and 4.74 for 0.99(2CsBr-LiBr)-0.01YBr3 one. The obtained characteristics are close to those of the analogous chloride systems.

Keywords: 
cesium bromide, lithium bromide, yttrium bromide, melts, potentiometry, oxoacidity, complexation, solubility.
References: 
1. S.Fujiwara, M.Inaba, A.Tasaka, J. Power Sources, 195, 7691 (2010). 
https://doi.org/10.1016/j.jpowsour.2010.05.032
 
2. H.C.Eun, J.H.Choi, I.H.Cho et al., J. Radioanal. Nucl. Chem., 307, 1419 (2016). 
https://doi.org/10.1007/s10967-015-4231-1
 
3. S.-K.Lee, S.-W.Kim, J.-H.Jang et al., Sci. Technol. Nucl. Installations, Art.ID 9048775 (2021). 
https://doi.org/10.1155/2021/9048775
 
4. W.M.Higgins, J.Glodo, U.Shirwadkar et al., J. Cryst. Growth, 312, 1216 (2010). https:// .
https://doi.org/10.1016/j.jcrysgro.2009.09.046
 
5. C.Whitney, C.Stapels, E.Johnson et al., Proc. SPIE, 7961, 79610U (2011).
https:// doi.org/10.1117/12.878225.
 
6. P.Masset, S.Schoeffert, J.-Y.Poinso et al., J. Electrochem. Soc., 152, A405 (2005). 
https://doi.org/10.1149/1.1850861
 
7. K.Sridharan. Thermal Properties of LiCl-KCl Molten Salt for Nuclear Waste Separation, Project No.09-780, University of Wisconsin, Madison, NEUP Final Report (2012). 
https://doi.org/10.2172/1058922
 
8. V.L.Cherginets, T.P.Rebrova, Chemistry of Deoxidization Processes in Molten Ionic Halides, Lambert Academic Publishing, Saarbruken (2014).
 
9. R.Combes, M.N.Levelut, B.Tremillon, Electrochim. Acta, 23, 1291 (1978).
https://doi.org/10.1016/0013-4686(78)80006-1
 
10. V.L.Cherginets, T.P.Rebrova, T.V.Ponomarenko et al., J. Chem. Eng. Data, 56, 3897 (2011). 
https://doi.org/10.1021/je200603c
 
11. J.Sangster, A.D.Pelton, J. Phys. Chem. Ref. Data, 16, 509 (1987). 
https://doi.org/10.1063/1.555803
 
12. R.F.Watson, G.S.Perry, J. Chem. Soc. Faraday Trans., 87, 2955 (1991).
https://doi.org/10.1039/ft9918702955
 
13. V.L.Cherginets, T.G.Deineka, O.V.Demirskaya et al., J. Electroanal. Chem., 531, 171 (2002). 
https://doi.org/10.1016/S0022-0728(02)01061-6
 
14. V.L.Cherginets, T.P.Rebrova, V.A.Naumenko, Fluid Phase Equilib., 401, 77 (2015). 
https://doi.org/10.1016/j.fluid.2015.05.025
 

Current number: