Funct. Mater. 2022; 29 (4): 481-487.

doi:https://doi.org/10.15407/fm29.04.481

Comparison of luminescent properties of halide perovskite nanocrystals in solutions and polymer films

T.V.Skrypnyk, I.I.Bespalova, I.I.Grankina, O.G.Viagin, S.L.Yefimova, A.V.Sorokin

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Halide perovskite nanocrystals of different anion compositions were synthesized using the ligand-assisted reprecipitation method. It has been shown, that toluene is a more suitable solvent compared to chloroform from the point of view of better nanocrystal stability. Chloride perovskites reveal shorter lifetimes but weaker luminescence compared to bromide ones. Embedding perovskite nanocrystals into poly(methyl methacrylate) films leads to a significant shortening the lifetimes of the nanocrystals and much longer stability of the samples. That makes them promising for the creation of fast scintillation materials.

Keywords: 
perovskite, nanocrystals, polymer films, luminescence, lifetime, exiton.
References: 
1. Q.A.Akkerman, G. Raino, M.V.Kovalenko et al., Nat. Mater., 17, 394 (2018).
https://doi.org/10.1038/s41563-018-0018-4
 
2. A.Dey, J.Ye, A.De et al., ACS Nano, 15, 10775 (2021).
https://doi.org/10.1021/acsnano.0c08903
 
3. M.V.Kovalenko, L.Protesescu, M.I.Bodnarchuk, Science, 358, 745 (2017).
https://doi.org/10.1126/science.aam7093
 
4. J.Shamsi, A.S.Urban, M.Imran et al., Chem. Rev., 119, 3296 (2019).
https://doi.org/10.1021/acs.chemrev.8b00644
 
5. Perovskite Quantum Dots, ed. by Y.Zhou, Y.Wang, Springer Singapore, Singapore (2020).
 
6. A.L.Efros, L.E.Brus, ACS Nano, 15, 6192 (2021).
https://doi.org/10.1021/acsnano.1c01399
 
7. N.Wang, W.Liu, Q.Zhang, Small Methods, 2, 1700380 (2018).
https://doi.org/10.1002/smtd.201700380
 
8. Z.Song, J.Zhao, Q.Liu, Inorg. Chem. Front., 6, 2969 (2019).
https://doi.org/10.1039/C9QI00777F
 
9. Q.Chen, J.Wu, X.Ou et al., Nature, 561, 88 (2018).
https://doi.org/10.1038/s41586-018-0451-1
 
10. Q.Xu, J.Wang, W.Shao et al., Nanoscale, 12, 9727 (2020).
https://doi.org/10.1039/D0NR00772B
 
11. S.Chhangani, M.Kumar, R.M.Sahani et al., Mater. Today Proc., 48, 1028 (2022).
https://doi.org/10.1016/j.matpr.2021.06.432
 
12. L.Lu, M.Sun, T.Wu et al., Nanoscale Adv., 4, 680 (2022).
https://doi.org/10.1039/D1NA00815C
 
13. L.Clinckemalie, D.Valli, M.B.J.Roeffaers et al., ACS Energy Lett., 6, 1290 (2021).
https://doi.org/10.1021/acsenergylett.1c00007
 
14. Z.Zhang, H.Dierks, N.Lamers et al., ACS Appl. Nano Mater., 5, 881 (2022).
https://doi.org/10.1021/acsanm.1c03575
 
15. C.Dujardin, E.Auffray, E.Bourret-Courchesne et al., IEEE Trans. Nucl. Sci., 65, 1977 (2018).
https://doi.org/10.1109/TNS.2018.2840160
 
16. P.Lecoq, C.Morel, J.O.Prior et al., Phys. Med. Biol., 65, 21RM01 (2020).
https://doi.org/10.1088/1361-6560/ab9500
 
17. X.Du, G.Wu, J.Cheng et al., RSC Adv., 7, 10391 (2017).
https://doi.org/10.1039/C6RA27665B
 
18. M.A.Becker, C.Bernasconi, M.I Bodnarchuk et al., ACS Nano, 14, 14939 (2020).
https://doi.org/10.1021/acsnano.0c04401
 
19. V.S.Chirvony, S.Gonzalez-Carrero, I.Suarez et al., J. Phys. Chem. C, 121, 13381 (2017).
https://doi.org/10.1021/acs.jpcc.7b03771
 
20. Y.Wang, M.Zhi, Y.Chan, J. Phys. Chem. C, 121, 28498 (2017).
https://doi.org/10.1021/acs.jpcc.7b09040
 
21. S.J.W.Vonk, M.B.Fridriksson, S.O.M.Hinterding et al., J. Phys. Chem. C, 124, 8047 (2020).
https://doi.org/10.1021/acs.jpcc.0c02287
 
22. S.K.Gupta, Y.Mao, Front. Optoelectron., 13, 156 (2020).
https://doi.org/10.1007/s12200-020-1003-5
 
23. R.M.Turtos, S.Gundacker, S.Omelkov et al., Npj 2D Mater. Appl., 3, 37 (2019).
https://doi.org/10.1038/s41699-019-0120-8
 
24. P.Chen, Z.Xiong, X.Wu et al., J. Phys. Chem. Lett., 8, 3961 (2017).
https://doi.org/10.1021/acs.jpclett.7b01562
 
25. D.Afanasyev, N.Ibrayev, N.Nuraje, Front. Mater., 7, 600424 (2021).
https://doi.org/10.3389/fmats.2020.600424
 
26. K.Gu, H.Peng, S.Hua et al., Nanomaterials, 9, 770 (2019).
https://doi.org/10.3390/nano9050770
 
27. Y.Wu, Q.Han, M.Wang et al., Opt. Express, 29, 36988 (2021).
https://doi.org/10.1364/OE.443112
 
28. C.-M.Yang, F.-C.Chen, Nanomaterials, 11, 993 (2021).
https://doi.org/10.3390/nano11040993
 
29. S.Zhang, Y.Liang, Q.Jing et al., Sci. Rep., 7, 14695 (2017).
https://doi.org/10.1038/s41598-017-15230-x
 
30. W.Zhao, Z.Wen, Q.Xu et al., Nanophotonics, 10, 2257 (2021).
https://doi.org/10.1515/nanoph-2021-0064

Current number: