Funct. Mater. 2022; 29 (4): 502-505.

doi:https://doi.org/10.15407/fm29.04.502

Liquid crystal mixtures with non-mesogenic dopants as optimized host matrices for functional nanoparticles

S.S.Minenko, N.A.Kasian, O.M.Samoilov, L.N.Lisetski

Institute for Scintillation Materials, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Liquid crystal suspensions of 4CHCA with carbon nanotubes and laponite modified by introducing of lauric and decanoic acid as non-mesogenic dopants were considered. The homogeneity of the resulting systems was investigated by the methods of DSC, spectrophotometry, and polarizing optical microscopy. The possibility of varying the temperature range of the nematic mesophase of 4CHCA by changing the dopant concentration and its effect on the optical properties of the system is shown.

Keywords: 
nanoparticles, liquid crystals, differential scanning calorimetry, decanoic acid.
References: 
1. J.Prakash, S.Khan, S.Chauhan, A.Biradar, J. Mol. Liq., 297, 112052-1-18 (2020).
https://doi.org/10.1016/j.molliq.2019.112052
 
2. F.Ahmad, M.Lugman, M.Jamil, Mol. Cryst. Liq. Cryst., 731, 1 (2021).
https://doi.org/10.1080/15421406.2021.1954759
 
3. J.Prakash, A.Kumar, S.Chauhan, Liquids, 2, 50 (2022).
https://doi.org/10.3390/liquids2020005
 
4. N.Brouckaert, N.Podoliak, T.Orlova et al., Nanomaterials, 12, 341-1-11 (2022).
https://doi.org/10.3390/nano12030341
 
5. R.F.de Souza, S.Zaccheroni, M.Ricci, C.Zannoni, J. Mol. Liq., 352, 118692-1-8 (2022).
https://doi.org/10.1016/j.molliq.2022.118692
 
6. A.Kumari Singh, S.Pal Singh, Mol. Cryst. Liq. Cryst., 746, 22 (2022).
https://doi.org/10.1080/15421406.2022.2078589
 
7. E.Samulski, D.Reyes-Arango, A.Vanakaras, D.Photinos., Nanomaterials, 12, 93-1-20 (2022).
https://doi.org/10.3390/nano12010093
 
8. P.Lesiak, K.Bednarska, W.Lewandowski et al., ACS Nano, 13, 10154 (2019).
https://doi.org/10.1021/acsnano.9b03302
 
9. I.Solis, T.Orlova, K.Bednarska et al., Nature Comms. Mat., 3, 1-1-10 (2022).
 
10. P.Goel, M.Arora, A.Biradar, RSC Adv., 4, 11351 (2014).
https://doi.org/10.1039/C3RA47225F
 
11. N.Pushpavathi, K.Sandhya, R.Pratibha, Liq. Cryst., 46, 666 (2019).
https://doi.org/10.1080/02678292.2018.1517421
 
12. N.Pushpavathi, K.Sandhya, S.Prasad, J. Mol. Liq., 302, 112571-1-8 (2020).
https://doi.org/10.1016/j.molliq.2020.112571
 
13. A.Samoilov, V.Nesterkina, L.Budianska et al., Functional Materials, 27, 675 (2020).
https://doi.org/10.15407/fm27.04.675
14. R.Pathinti, B.Gollapelli, S.Jakka, J.Vallamkondu, J. Mol. Liq., 336, 116877-1-8 (2021).
https://doi.org/10.1016/j.molliq.2021.116877
 
15. J.Yu, J.Hwang, J.Lee et al., Nanoscale, 13, 16641 (2021).
https://doi.org/10.1039/D1NR04338B
 
16. S.Torgova, L.Komitov, A.Strigazzi, Liq. Cryst., 24, 131 (1998).
https://doi.org/10.1080/026782998207668
 
17. S.Torgova, D.Abramic, A.Strigazzi, S.Zumer, Proc. SPIE., 3319, 201 (1998).
https://doi.org/10.1117/12.301319
 
18. A.Ivashenko, V.Titov, E.Kovshev, Mol. Cryst. Liq. Cryst., 33, 195 (1976).
https://doi.org/10.1080/15421407608084295
 
19. R.Nessim, Thermochim. Acta, 343, 1 (2000).
https://doi.org/10.1016/S0040-6031(99)00309-3
 
20. L.Lisetski, M.Soskin, N.Lebovka, Physics of Liquid Matter: Modern Problems, Chapter 10, Springer Proc. in Physics, 171, 243 (2015).
https://doi.org/10.1007/978-3-319-20875-6_10
 
21. L.Lisetski, S.Minenko, A.Samoilov, N.Lebovka, J. Mol. Liq., 235, 90 (2017).
https://doi.org/10.1016/j.molliq.2016.11.125
 
22. A.Samoilov, S.Minenko, N.Lisetski et al., Liq. Cryst., 45, 250 (2018).
https://doi.org/10.1080/02678292.2017.1314560
 
23. L.Bulavin, L.Lisetski, S.Minenko et al., J. Mol. Liq., 267, 279 (2018).
https://doi.org/10.1016/j.molliq.2017.12.078
 
24. A.Samoilov, S.Minenko, O.Sushynskyi et al., J. Mol. Liq., 295, 11689-1-8 (2019).
https://doi.org/10.1016/j.molliq.2019.111689
 
25. N.Lebovka, L.Lisetski, L.Bulavin, Modern Problems of the Physics of Liquid Systems, L.A.Bulavin and L.Xu (eds.), Springer Proceedings in Physic, 223, 137 (2019).
https://doi.org/10.1007/978-3-030-21755-6_6
 

 

Current number: