Funct. Mater. 2022; 29 (4): 514-520.

doi:https://doi.org/10.15407/fm29.04.514

Study of properties of AlB12-Al electric spark coatings on Steel 45

A.P.Umanskyi1, A.I.Dukhota2, V.E.Sheludko1, V.B.Muratov1, V.V.Kremenitsky3, I.S.Martsenyuk1, M.A.Vasilkovskaya1, A.D.Kostenko1, D.S.Kamenskyh4

1Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky Str., 03142 Kyiv, Ukraine
2National Aviation University, Aerospace Faculty, 1 Liubomyra Huzara Ave., 03058 Kyiv, Ukraine
3Technical Center, National Academy of Sciences of Ukraine, 13 Pokrovskaya Str., 04070 Kyiv, Ukraine
4V.P.Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 50 Kharkovskoe Shausse, 02160 Kyiv, Ukraine

Abstract: 

The article deals with the study of the structure and properties of electric spark coatings of AlB12-50 wt.% Al aluminum-matrix composite electrode material on Steel 45. The fundamental possibility of obtaining such coatings is estimated by theoretical calculation of the Palatnik criterion (0.11). The thermal conductivity coefficient and heat capacity of the composite were calculated or determined experimentally. The kinetics of mass transfer during electrospark alloying (ESA) has been studied. Taking into account rather high values of the cathode mass increase, the coating deposited in 4 mode (E = 0.61 J, τ = 170 μs) of the ALIER-52 setup was selected for further research. The thickness (h ~ 53 μm), microhardness (Hμ = 10 GPa) and dry friction wear 5.01 mg/(km·cm2) were determined for the coating. The phase composition of the coating was studied with a Rigaku MiniFlex 300/600 diffractometer; elemental X-ray spectrum analysis of the surface and cross-section was carried out using a JEOL JSM-6490 LV scanning electron microscope with energy-dispersive X-ray microanalysis. Al13Fe4, AlFeO3, AlB2 and Al2O3 phases and small quantities of Al, B, B2O3, AlBO3, AlFe, AlFe3 and AlB10 were revealed in the coating by X-ray analysis. The wear of ESA-coated specimens was 2.7 times less than that of an uncoated one. A conclusion is made about the possibility of using this electrode material for ESA coatings of steels.

Keywords: 
AlB<sub>12</sub>-Al composite, ESA, mass transfer kinetics, structure, phase composition, microhardness, wear.
References: 
1. P.A.Vityaz', A.F.Il'yushchenko, A.I.Shevtsov, Fundamentals of Applying of Wear-, Corrosion-resistant and Heat-shielding Coatings, Bel. Nauka, Minsk (2006) [in Russian].
 
2. A.V.Bely, A.S.Kalinichenko, A.G.Devoino et al., Engineering of Surfaces of Structural Materials Using Plasma and Beam Technologies, Bel. Nauka, Minsk (2017) [in Russian].
 
3. Surface Modification to Improve Properties of Materials, Special Issue Editor: Miran Mozetic, MDPI, Basel, Beijing, Wuhan, Barcelona, Belgrade (2019).
 
4. Yu.V.Shcherbakov, A.M.Kalifulin, Modern Methods of Restoring and Hardening of Details, Prokrost, Perm (2018) [in Russian].
 
5. B.Fotovvati, N.Namdari, A.Dehghanghadikolaei, (J. Manuf. Mater. Process., 3, 28 (2019). 
https://doi.org/10.3390/jmmp3010028
 
6. A.E.Gitlevich, V.V.Mikhailov, N.Ya.Parkansky et al., Electrospark Alloying of Metal Surfaces, Stiinta, Chisinau (1985) [in Russian].
 
7. A.D.Verkhoturov, I.A.Podchernyaeva, L.F.Pryadko et al., Electrode Materials for Electrospark Alloying, Nauka, Moscow (1988) [in Russian].
 
8. A.D.Verkhoturov, S.V.Nikolenko, Strength. Technol. Coat., 2, 13 (2010).
 
9. M.S.Storozhenko, O.P.Umanskyi, V.B.Tarelnyk et al., Powder Metall. Met. Ceram., 59, 330 (2020). 
https://doi.org/10.1007/s11106-020-00166-1
 
10. O.O.Vasiliev, V.B.Muratov, T.I.Duda, Physics and Chemistry of Solid State, 18, 358 (2017). 
https://doi.org/10.15330/pcss.18.3.358-364
 
11. P.S.Kisly, V.A.Neronov, T.A.Prikhna et al., Aluminum Borides, Nauk. Dumka, Kiev (1990) [in Russian].
 
12. UA Patent 107193 (2016).
 
13. UA Patent 107259 (2016).
 
14. G.N.Dulnev, Yu.P.Zarichnyak, Thermal Conductivity of Mixtures and Composite Materials, Energiya, Leningrad (1974) [in Russian].
 
15. L.S.Palatnik, Dokl. Acad. Nauk SSSR, LXXXIX, 455 (1953).
 
16. O.S.Manakova, A.E.Kudryashov, E.A.Levashov, Surf. Eng. Appl. Elect., 51, 413 (2015). 
https://doi.org/10.3103/S1068375515050117
 
17. V.G.Sorokin, A.V.Volosnikova, S.A.Vyatkin et al., Brands of Steels and Alloys, Mashinostroenie, Moscow (1989) [in Russian].
 
18. thermalinfo.ru
 
19. K.Guthmann, Stahl und Eisen, 71, 399 (1951).
 
20. V.S.Kovalenko, A.D.Verkhoturov, L.F.Golovko et al., Laser and Electroerosion Hardening of Materials, Nauka, Moscow (1986) [in Russian].
 
21. T.Atoda, I.Higashi, M.Kobayashi, Sci. Pap. Inst. Phys. Chem. Res., 61, 92 (1967).
 
22. S.Okada, T.Atoda, J. of the Ceram. Soc. Jap., 88, 547 (1980).
https://doi.org/10.2109/jcersj1950.88.1021_547
 
23. G.Will, Z. Kristallogr., 128, 156 (1969).
https://doi.org/10.1524/zkri.1969.128.1-2.156
 
24. S.A.Pyachin, A.A.Burkov, Surf. Eng. Appl. Elect., 51, 118 (2015). 
https://doi.org/10.3103/S1068375515020131
 
25. V.F.Mazanko, D.S.Gertsriken, V.M.Mironov et al., in: Proc. XI Int. Conf. "Interaction of Radiation with Solids", Minsk, Belarus (2015), p.240.
 
26. S.Frangini, A.Masci, Surf. Coat. Technol., 184, 31 (2004). 
https://doi.org/10.1016/j.surfcoat.2003.10.050
 
27. Jian Gu, Sasa Gu, Lihong Hue et al., Mater. Sci. & Eng. A, 558, 684 (2012). 
https://doi.org/10.1016/j.msea.2012.08.076
 
28. M.Windmann, A.Rottger, I.Hahn et al., Surf. Coat. Technol., 321, 321 (2017). 
https://doi.org/10.1016/j.surfcoat.2017.04.075
 
29. L.V.Koroleva, in: Recent Advances in Abrasives Research, ed. by Ing. Dirk Bahre, PhD, Nova Science Publishers Inc., New York, USA (2013), p.173.
 

Current number: